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Chapter 1

Introduction

In the past few decades, modern research has acquired a new direction which is “nanoscale

science and technology” [1] [2]. This area of research is driven by the ability to fabricate,

model and manipulate objects with small number of atoms which has led to the investigation

of material properties close to the atomic level. In electronics industry, the basic units of

integrated circuits and storage media are approaching the size of few tens of nanometers. This

trend of miniaturization has opened the door to new technologies for the fabrication of new

materials and new devices. This class of materials is called “nanomaterials” which are sized

between one to few tens of nm in atleast one dimension. In this size range, the nanomaterials

frequently exhibit new properties at a level intermediate between atomic/molecular and bulk.

They enter into a size regime where the properties of the materials become dependent on the

size. Michael Faraday provided the first description of the changes in the optical properties of

materials with the size in his classic paper in 1857 [3]. This makes them a very important class

of materials to study. The variation of various material properties such as electric transport [4],

field emission [5] and the Youngs modulus [6] have been studied at the nanosized regime.

Nanomaterials have been successfully applied to technological roles, for example logic gates

have been fabricated using semiconductor nanowire junctions [7], and have been shown to be

capable of basic computation [7]. Gold nanostructures are very useful for early detection and
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treatment of cancer. The interesting properties of nanomaterials have been praised with many

great promising applications in near future.

The origin of this unique properties of nanomaterials which are entirely different from their

bulk and those of a single atom are due to two reasons: the first one is the surface effect and

the other one is the quantum confinement effect. Nanomaterials present an extremely high

surface to volume ratio [9]. So, a large percentage of the atoms in this material is on its surface

compared to it’s bulk which is shown in Fig. 1.1. It is well known that surface atoms play an

important role in governing the electronic, optical and thermodynamic properties in materials.

As a result of this, the overall properties of the crystal is influenced. Since the percentage of

surface atoms depends considerably on the size of the particle, it can give rise to size effects in

physical and chemical properties such as chemical reactivity of these materials. For example,

bulk cadmium sulfide has a melting point of about 1600 ◦C, whereas a nanocrystal with radii

25 Å of the same material has a melting temperature of about 400 ◦C [10].

Figure 1.1: variation of percentage of bulk and surface atoms as a function of particle size of

nanomaterials [8].

In semiconductors, electronic and optical properties change drastically below a critical size

limit which depends on the material composition [11]. This size limit is comparable to the
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Bohr exciton radius. In a semiconductor, an electron and a hole are formed upon excitation

across the band gap and this bound state of an electron-hole pair due to a Coulomb interaction

between them is called exciton. The average separation between the electron and the hole in

the exciton is known as the Bohr exciton radius. In bulk semiconductors, the exciton can move

freely in all directions. As the size of the material is reduced below this Bohr exciton radius, the

electron and hole, confined in a space, cannot however be considered as independent particles

and the exciton nature is enhanced. In addition, the wave function of the electron and hole

feel the the effect of the boundary. As a result, the electronic energy levels get modified. This

phenomenon is called quantum confinement [12].

Figure 1.2: Wave functions and energy levels of a particle in a box. The figure is adapted

from [13].

Particle-in-a-box treatment provides a simple way to understand the effect shown in Fig. 1.2.

For this case, the eigen functions obtained by solving the Schrödinger equation are,

Ψn(x) =

√
1

2L
sin(knx), kn =

πn

L
(1.1)

and the corresponding eigen values are,

En =
~2k2n
2m

=
~2π2n2

2mL2
(1.2)
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More reduction in box size (L) results in more confined electron-hole pairs which leads to a

larger separation between the individual energy levels since it is inversely proportional to L2.

This effect is primarily driven by effective masses (m) of electrons and holes. As a result of this

effect, band gap of a semiconductor increases [14]. The size dependent band gap can be a useful

tool for designing materials with well controlled-optical properties. The band gap variation with

size has been confirmed with different semiconductor nanomaterial systems. One example of

different sizes of CdSe nanoparticles capped with ZnSe is shown in Figure 1.3. The blue light

emitting particles have the highest band gap as the particles size are the smallest in this case.

The red light emitting particles have the smallest band gap because of the larger particle size.

The size of the particles can be tuned in such a way that all the possible visible colors can be

achieved.

Figure 1.3: Different emission colors from different sizes of CdSe nanoparticles. The nanopar-

ticles were capped with ZnSe. (Adapted from [15]).

In nanoscale regime, dimensionality is one of the critical parameters to modulate physical

and chemical properties of nanomaterials [16]. According to the direction of confinement of

charge carriers nanomaterials can be classified into categories of two-dimensional films (2-D)

[17], one-dimensional (1-D) [18] quantum wires and zero-dimensional (0-D) quantum dots or

nanocrystals [19]. In two-dimensional nanomaterials, carriers are confined in only one direction

which results in a dramatic change in the density of states from bulk. While going from 3-D

(bulk) to 2-D, the density of state is recognized into steps shown in Fig. 1.4. In 1-D quantum

wire, carriers can move freely only in one direction as now they are confined in two directions.
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Finally in zero -dimensional quantum dot, carriers are confined in all three directions. The

corresponding density of states for 1-D and 0-D nanomaterials are shown in the Fig. 1.4 which

are drastically different from 3-D (bulk). In the present thesis, we focus on materials that are

confined only in the one dimension i.e. 2-D quantum films or platelets.

Figure 1.4: Evolution of the density of states with dimensionality showing the variation of

density of states with energy for the infinite bulk solid, a quantum film, a quantum wire and a

quantum dot [8].

Until now, most research on dimensionality controlled studies has been concentrated on the

zero-dimensional quantum dot and one-dimensional quantum wires. Two-dimensionality in

nanomaterials is emerging fast, exhibiting unexpected new phenomena which are absent from

other dimensionalities. According to the early report of Geim and Novoselov and co-workers

in 2004 [20], graphene is the first isolated two-dimensianl nanomaterials with one-atom thick

planar sheet of sp2-bonded carbon in hexagonal structure arranged in a densely packed 2-D

honeycomb lattice shown in Fig. 1.5 which has rapidly risen to be one of the hottest topics

in materials science due to its fascinating properties and great potential applications. Owing

to its zero band gap, super thin and flat structure, graphene exhibits remarkable electronic,

thermal, optical and mechanical properties, such as superior thermal conductivity ( 5000 W

m−1 K−1) [21], high optical transmittance (97.7%) [22], extremely high Young’s modulus ( 1.1

TPa) [23] and fracture strength (125 GPa) [23], specific surface area (theoretically, 2630 m2

g−1) [24], high chemical stability, as well as excellent transport phenomena such as the quantum

Hall effect [25] and ambipolar electric field effect. These intriguing properties endow graphene-
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based materials with many applications, such as in ultra-strong lightweight components used

in space shuttles to improve fuel efficiency. As a promising nanomaterial, graphene can also

be used in catalysis, sensors, bio medicine and in reinforced composites [24]. The development

of graphene will undoubtedly not only cause a revolution in understanding the fundamental

properties of two dimensional structural materials with delocalized electrons, but will also

transform the technology dramatically in future. However, the absence of a band gap has

limited its applications and shifted the focus onto several layered transition metal disulphides

and diselenides such as MoS2, WSe2 etc. colloidal nanoplatelets and monolayers of BN, ZnO

etc.

Figure 1.5: Structure of Graphene.

Similar to graphene, these two-dimensional transition metal dichalcogenides of MX2 type where

M stands for the transition metal elements and X for the chalcogen elements (M = Mo, W,

Ti etc., X = S, Se, etc.) are based on the typical layered-structured compounds whose layers

are bound by weak van der Waals forces. As an example of these materials, crystal structure

of Molybdenum disulphide (MoS2) is shown in Fig. 1.6. Atomic scale thickness endows these

two-dimensional semiconductors with peculiar and fascinating properties in contrast with those

of their bulk parent compounds such as band gap crossover from direct to indirect band gap

takes place as a function of strain [26] and thickness [27]. Such material characteristics can also

be complementary to what is lacking from graphene which is essential for energy harvesting

applications. However, this field is not well developed due to several experimental challenges

and the lack of our understanding of their intrinsic properties.
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Figure 1.6: Crystal structure of MoS2 where Mo and S atoms are shown by violet and yellow.

Apart from the transition metal dichalcogenides, two-dimensional colloidal anisotropic inorganic

crystal nanostructures, with a thickness (<10 nm) much smaller than their lateral dimensions

(that can reach several micrometers), called nanoplatelets have recently emerged as a novel

class of materials with exotic properties which are very useful in electronic and optical device

applications [28] [29] [30]. There are enough reports on the synthesis and characterization of

zero-dimensional quantum dots [31] and one-dimensional quantum wires and tubes [32] in the

literature and they are well studied theoretically [33] as well as experimentally [34]. However,

there are only few examples of the synthesis of the ultrathin 2-D colloidal nanoparticles with a

strong motivation to develop new types of devices [35], such as the Bloch oscillator or quantum

well lasers. Since then, new ultrathin 2-D nanoparticles such as metals (Ag [36], Au [37]),

semiconductors [38] [39], metal oxides [40] etc. have been synthesized. 2-D semiconducting

nanomaterials have acquired much more attention due to their optical properties useful for

various industrial applications such as lasers and infrared detectors.

Earlier two-dimensional heterostructures of semiconductors were grown on a substrate us-

ing techniques such as beam epitaxy (MBE) [41], metal organic chemical vapor deposition

(MOCVD) [42] [43], metal-organic vapor-phase epitaxy (MOVPE) [44]. The processing cost
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in these cases were high, in addition to the fact that the films could not be separated from

the substrate. The substrate has the disadvantage of limiting the process ability of the ultra-

thin semiconductor layers, especially when assembly or orientation control is desired. Recently,

nanoplatelets have been synthesized in free-standing form [45] [46] [47] which have the advan-

tage of manipulating them without their substrate. Freestanding structures with 2-D geometry

can be obtained using various techniques. For example, Ithurria and Dubertret have [48] grown

2-D colloidal CdSe nanoplatelets having zinc blende crystal structure in free-standing form.

These nanoplatelets have lateral dimensions from 6 to 40 nm and thickness is found to be 2.2

± 0.3 nm observed in TEM images. In this process, the shape, aspect ratio and thickness of

the platelets can be controlled by varying various reaction conditions.

Effective mass approximation (EMA) by Efros and Efros [49] was the the first theoretical

approach for the explanation of quantum confinement effect on band gap as a function of size. In

this approximation, the effective mass equation is solved variationally considering various choice

of electron and hole wave functions. According to Brus [50], in the strong confinement regime,

where the radius of a spherical nanocrystals is much smaller than the Bohr exciton radius, the

band gap of a nanocrystal is inversely proportional to it’s radius. This model is improved by

Einevoll [51] and Nair et al. [52] considering bond-orbital model for hole wave function as the

valence band of II-VI semiconductors is comprised of triply degenerate bands at Γ point whereas

the electron wave function is described by a single band EMA. Even with these improvements,

this model has some drawback due to the adjustments of finite potential for every system.

There are other theoretical approaches which demonstrate the variation of band gap with size

like ab-initio method [53], k·p [54], empirical pseudopotential method [55] [56], empirical tight

binding method [17] [57] [58] etc. In ab-initio method, calculation of nanosystems is restricted

to small sizes ∼ 200-500 atoms. This limits the use of ab-initio calculations to only small

sizes of clusters. Continuum models such as effective mass and k·p, ignore atomistic effects.

Atomistic effects are included in empirical pseudopotential method as well as empirical tight

binding method. We shall focus on the empirical tight binding method which we have used in

parts of the thesis. Here a set of atomic orbitals are considered on each atom. The orbitals that

are chosen in this model are those which contribute to the valence band. The onsite energies
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as well as hopping interaction strengths are determined by fitting the ab-initio band structure

along various symmetry directions.

In this thesis, I have studied the electronic and structural properties of two-dimensional semi-

conductors and oxides. The techniques that I have used to carry out our analysis includes a

combination of ab-initio electronic structure calculations as well as model Hamiltonian meth-

ods. I have developed a code for real space tight binding model for nanostructures as well as

several other codes for the analysis of the results during my PhD. My work is mainly focused on

the study of various aspects of two-dimensional semiconductors such as nano-platelets of ZnS,

monolayers and bilayers of MoS2 and MoSe2 and monolayer of ZnO. In Chapter 2, I have dis-

cussed the fundamental methods used in the electronic structure calculations performed in this

thesis. We started with the many body Hamiltonian and discussed different approximations

and approaches which are useful to understand the basic principles on which density function

theory works.

Among binary semiconductors (III-V and II-VI groups), one finds that the more ionic members

favor the wurtzite structure, while the covalent ones are found to favor the zinc blende form,

with the other form (zinc blende and wurtzite, respectively) being available as a metastable

state with an energy only a few meV per atom higher than the ground state. Since physical

and chemical properties of any material depend critically on the specific crystal structure, such

a low-lying metastable state holds out the interesting possibility of tilting the energy balance

in favor of the metastable phase even under small perturbations, thereby drastically altering

material properties. In Chapter 3 we have shown that Mn doping in ZnS nanoplatelets

can induce a structural transition from the wurtzite to the zinc blende phase. In order to

understand the microscopic origin of such an unusual phase transformation, we use first principle

electronic structure calculations carried out within the framework of density functional theory.

Our results show that at a fundamental level, quantum confinement effects at the nanoscale

are responsible for the observed phenomenon, the two structure types being discriminated by

Mn incorporation/ejection essentially due to significantly different hole effective masses in the

zinc blende and wurtzite phases. Our results also explain the absence of any such structural

transformation above a certain size of the nanocrystal.
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In Chapter 4 we have considered a real space tight binding model to study the size dependence

of the band gap of ZnS nanoplatelets. Confinement in both the lateral directions as well as

the vertical direction have been examined. Although one has small variations in the band gap

as the Bohr exciton radius of ZnS is approached in the lateral direction, significant changes

in the band gap are seen due to confinement in the growth direction. We consider platelets

with different number of layers in the growth direction and show that subtracting out the

contribution from confinement in the growth direction results in the curves collapsing onto

each other. This indicates the separability of the potential in the growth direction present even

in a fully atomistic calculation.

At the monolayer limit both MoS2 and the graphitic phase of ZnO have a direct band gap.

Biaxial tensile strain has been found to induce a transition into an indirect band gap semi-

conductor with the strain percentage required for the transition equal to 0.83% for MoS2 and

8% for ZnO, respectively. A low strain percentage is desirable for possible device applications.

In Chapter 5 we identify a simple design principle which could be used to identify materi-

als requiring a small strain to induce such a transition. A scaling of the hopping interaction

strengths according to Harrison’s law within a tight binding model for MoS2 is able to capture

the effect. Similar analysis has been done in Chapter 6 for MoSe2, which also shows that a

modest biaxial tensile strain of 3% can drive it into an indirect band gap semiconductor with

the valence band maximum (VBM) shifting from K point to Γ point.

In Chapter 7 we have examined the electronic structure of a monolayer as well as a bilayer

of MoS2 and MoSe2. While a monolayer is found to be a direct band gap semiconductor in

both systems, the bilayer has been found to be an indirect band gap semiconductor. As these

materials are van der Waals heterostructures, inter-layer interaction is expected to be weak.

Considering a tight binding model we are able to reproduce the band structure calculated

within ab-initio calculations. Using the extracted parameters, we are able to determine the

contribution from inter-layer interactions and charge transfer effects leading to the observed

band gap variations.
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Chapter 2

Theoretical Background

2.1 Introduction to the Many Particle Hamiltonian

The origin of the wide range of properties of solids arises from the mutual interaction of electrons

and nuclei of the constituent atoms. An exact theory for such system is inherently quantum

mechanical and is based on solving the many-body time independent Schrödinger equation of

the form, HΨ(RI ; ri)= EΨ(RI ; ri)

where H is the Hamiltonian of the system and E is the energy of the system; Ψ(RI ; ri) is the

many-body wave function that describes the state of the system; RI are the positions of the

nuclei and ri are the variables that describe the electrons. The Hamiltonian of the many-body

system is,

H = −
∑
i

~2

2me

∇2
ri
−
∑
I

~2

2MI

∇2
RI
−
∑
i,I

ZIe
2

|RI − ri|
+
1

2

∑
ij(i 6=j)

e2

|ri − rj|
+
1

2

∑
IJ(I 6=J)

ZIZJe
2

|RI −RJ |
(2.1)

In the above equation, ~ is the Planck’s constant divided by 2π; MI is the mass and ZI is the

charge of nucleus I; me is the mass and e is the charge of electron. The terms appearing in

the above equation represent the kinetic energy of the electrons; the kinetic energy of the nu-

clei; the nucleus-electron attractive potential energy; the electron-electron and nucleus-nucleus
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repulsive potential energies respectively. In pseudopotential method, the nucleus-electron in-

teraction term is taken care of by convenient pseudopotentials replacing the true potential of

the nuclei. The electron-electron interaction part of the Hamiltonian makes the many-body

problem so hard that, in most of the cases it is impossible to get the exact solution. Almost

all electronic structure calculation methods need some approximations which can simplify the

electron-electron interaction.

2.2 Born-Oppenheimer (B-O) Approximation

The first and simplest approximation [1] of the Hamiltonian is to drop the kinetic energy term

of the nuclei. As the mass of the nucleus is several times larger compared to the electrons, so

the time scale of the motion of electrons is much larger than the nuclei and thus the response

time of the electrons to any change in the positions of the nuclei is considered instantaneous.

In this approximation, the nuclear positions RI become classical variables and the nuclei can

be considered as fixed in a given selected configuration. In light of the Born-Oppenheimer

approximation, the last term of the above Hamiltonian equation which is the nucleus-nucleus

repulsive energy is simply a constant as far as the electronic degrees of freedom are concerned.

So, under B-O approximation, the many-body Hamiltonian for a system of interacting electrons

moving in the field of fixed ion cores, takes the form,

H = −
∑
i

~2

2me

∇2
ri
+
∑
i

Vion(ri) +
1

2

∑
ij(i6=j)

e2

|ri − rj|
(2.2)

where

Vion(ri) = −
∑
I

ZIe
2

|RI − ri|
(2.3)

This is the ionic potential that every electron experiences at the position ri. We can assume

that a system consisting of electrons moving in the external potential Vion(r) and this term is
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replaced by a pseudopotential that takes into account the effects of core electrons. Later, we

have discussed about the pseudopotentials in detail in Section. 2.11.1.

2.3 Single Particle Approximation

Even with the above simplifications, solving the Hamiltonian for Ψ(RI ; ri) is a very difficult

task. There are two properties of electrons which is responsible for the difficulty-one is the

“exchange” property which is the manifestation of the Pauli exclusion principle and the other

one is the “correlation” property of electron. So, we need further improvement to develop an

effective single-particle picture, in which the system of interacting electrons can be mapped into

a system of non-interacting quantum mechanical particles that approximates the behaviour of

original system. Two distinct approaches have been put forward in this direction: one of them

is the wave function approach and the other one is the density functional theory.

Wave function approach can correctly incorporate the Pauli exclusion principle for identical

fermions. Here the total N-electron ground-state wave function is represented by the best

antisymmetrized product of N one-electron spin-orbitals. This is called the Hartree-Fock ap-

proximation.

2.4 The Hartree Approximation

Hartree [2] proposed a simple way to solve the many-electron Hamiltonian equation. He sug-

gested to rewrite equation (2.1) as a one-particle equation for an electron moving in an average

potential from all the electrons. The wave function then becomes

ΨH({ri}) = φ1(r1)φ2(r2)......φN(rN) (2.4)

The φi(ri) are N independent electron wave functions. These single particle states are nor-

malized to unity. This is known as the Hartree approximation (ΨH stands for Hartree wave
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function). A basic result in quantum mechanics states that if E0 is the ground state energy

solution of the Schrödinger equation, for any wave function ϕ:

〈ϕ|H|ϕ〉
〈ϕ|ϕ〉

≥ E0 (2.5)

This is called the variational principle. Using this variational argument in this context we

obtain the following single particle equations within the Hartree approximation,

[− ~2

2me

∇2
r + Vion(r) + e2

∑
j 6=i

〈φj|
1

|r− r′|
|φj〉]φi(r) = εiφi(r) (2.6)

In the Hartree approximation, each electron denoted by index i is treated independently moving

in an effective potential determined by an integration over the wave functions of the other

electrons. Thus, this approximation is a mean-field approximation replacing the complicated

many-body problem by N simpler problems in a mean-field potential.

2.5 The Hartree-Fock Approximation

In the Hartree approximation, for the many-body wave function in terms of non-interacting sin-

gle electron state, the antisymmetric nature of the electronic wave function was not considered.

Electrons being fermions, the exact many-particle wave function needs to be antisymmetric

under an exchange of electrons:

Ψ(r1, r2, ..., rj, ..., rk, ..., rN) = −Ψ(r1, r2, ..., rk, ..., rj, ..., rN) (2.7)

Fock [3] has replaced the Hartree wave function by a Slater determinant to conserve the anti-

symmetric nature of electrons. This is known as Hartree-Fock approximation and the the form

of Slater determinant [4] is,
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ΨHF ({ri}) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ1(r2) . . . φ1(rN)

φ2(r1) φ2(r2) . . . φ2(rN)
...

...
. . .

...

φN(r1) φN(r2) . . . φN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣
(2.8)

The total energy with the HartreeFock wave function is,

EHF = 〈ΨHF |H|ΨHF 〉

=
∑
i

〈φi| −
~2

2me

∇2
r + Vion(r)|φi〉

+
e2

2

∑
ij(j 6=i)

〈φiφj|
1

|r− r′|
|φiφj〉

− e2

2

∑
ij(j 6=i)

〈φiφj|
1

|r− r′|
|φjφi〉

(2.9)

Using the variational principle with this Hartree-Fock form of wave function, we obtain the

single-particle Hartree-Fock equations,

[− ~2

2me

∇2
r + Vion(r) + Vi

H(r)]φi(r) + e2
∑
j 6=i

〈φj|
1

|r− r′|
|φi〉φj(r) = εiφi(r) (2.10)

The term Vi
H(r) is called the Hartree potential which takes the form,

Vi
H(r) = e2

∑
j 6=i

〈φj|
1

|r− r′|
|φj〉 (2.11)

The above Hartree-Fock equation differ from the Hartree equation by one extra term, the last

term which is called the “exchange” term. This “exchange” term is the manifestation of the

effects of exchange between electrons.
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2.6 The Correlation Energy

The Hartree-Fock approach which assumes the electrons independently moving in an effective

potential is an approximation to the true many-body problem. The difference between the exact

total energy and the total energy (Ecorr. = Eexact - E
HF ) given by the Hartree-Fock method

is generally called the correlation energy. Many methods exist to introduce this correlation

energy very accurately.

2.7 The Density Functional Theory

Hohenberg and Kohn in 1964 developed an alternative approach for describing the ground state

properties of many-body system more efficiently which is called the density functional theory

(DFT). The fundamental concept of DFT is to deal with a formulation of the many-body

Schrödinger equation (2.1) that involves the more manageable total density of electrons n(r)

instead of using the many-body wave function Ψ(RI ; ri).

There is a huge simplification in DFT, as one can develop the appropriate single-particle equa-

tions in an exact manner and then introduce approximations as needed. Whereas in the previous

cases one started with a drastic approximation for the behavior of the system (in case of the

Hartree and HartreeFock wave functions represent). One can say, all ground state properties

of the many electron system are functional of its ground state electron distribution. When

the ground state electron distribution of the many electron system is determined, its external

potential is also uniquely determined.

In DFT the electron density is the central quantity. In a system of N electrons the electron

density is defined from the wave functions as follows,

n(r) =
N∑
i=1

∫
...

∫
dr1...drNΨ

∗(r1, ..., rN)δ(ri − r)Ψ(r1, ..., rN) (2.12)
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2.8 The Hohenberg-Kohn Theorems

Modern theory of DFT is based on the two Hohenberg-Kohn (HK) theorems [5]: the first

theorem states that the many-body wave function can be replaced by the electron ground state

density without any loss of information and the second theorem is more or less the equivalent

of the variational principle in standard quantum mechanics.

The Hohenberg-Kohn theorems are:

Theorem 1: For any system of interacting particles in an external potential Vext(r), the po-

tential Vext(r) is determined uniquely, except for a constant, by the ground state density n(r).

This implies a one-to-one correspondence between the external potential Vext(r) of the system

and the density n(r). So, all the properties can thus be extracted from the exact ground state

electron density.

Now, we will show that the density n(r) is uniquely defined given an external potential Vext(r)

for the electrons. Suppose there are two different external potentials Vext(r) and V
′
ext(r) which

differ by more than a constant and lead to the same ground state density n0(r). We will

prove that this is impossible. These two external potentials would corresponds to two different

Hamiltonians, H and H ′. These two Hamiltonians have the same ground state density n0(r)

but have different ground state wave functions, Ψ and Ψ′ and the total energies E0 and E ′
0

respectively. So, the Hamiltonian equations are: HΨ = E0Ψ and H ′Ψ′ = E ′
0Ψ

′.

From variational theorem, the energies can be expressed as,

E0 = 〈Ψ|H|Ψ〉 (2.13)

and

E ′
0 = 〈Ψ′|H ′|Ψ′〉 (2.14)

Since, Ψ′ is not the ground state of H,
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E0 < 〈Ψ′|H|Ψ′〉

< 〈Ψ′|H ′|Ψ′〉+ 〈Ψ′|H −H ′|Ψ′〉

< E ′
0 +

∫
n0(r)[Vext(r)− V ′

ext(r)]dr

(2.15)

Similarly,

E ′
0 < 〈Ψ|H ′|Ψ〉

< 〈Ψ|H|Ψ〉+ 〈Ψ|H ′ −H|Ψ〉

< E0 +

∫
n0(r)[V

′
ext(r)− Vext(r)]dr

(2.16)

Adding the equations (2.15) and (2.16) lead to the inconsistency,

E0 + E ′
0 < E ′

0 + E0 (2.17)

Therefore, we are able to show that no two different external potentials Vext(r) can lead to the

same ground state density n0(r), i.e., the ground state density determines the external potential

Vext(r), except for a constant. This proves that there is a one-to-one correspondence between

an external potential Vext(r) and the density n0(r).

Theorem 2: A universal functional for the energy E[n] in terms of the density n(r) can be

defined, valid for any external potential Vext(r). The exact ground state energy of the system is

the global minimum of this energy functional and the density that minimizes the functional is

the exact ground state density n0(r).

This simplifies the complex problem of finding all ground state physical properties of a system

by estimating the minimum of the energy with respect to the electron density instead of wave

function. So, if the electron density n(r) is known, each of the properties of the system can be

viewed as a functional of n(r), including the total energy functional given by,
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E[n(r)] = 〈Ψ[n]|H|Ψ[n]〉

= T [n] + Eint[n] +

∫
Vext(r)n(r)dr

= F [n] +

∫
Vext(r)n(r)dr

(2.18)

Where F [n], which is the sum of the kinetic energy T [n] and internal energy Eint[n], are called

Hohenberg- Kohn functional of the interacting electron system. This F [n] are same for all

electron systems having unique density n(r).

According to variational principle, for any wave function Ψ′ , the energy functional E[Ψ′] has

its global minimum value only when Ψ′ is the ground state wave function Ψ0(corresponding

to the ground state electron density n0(r)), with the constraint that the total number of the

particles is conserved. Now, according to HK theorem I, Ψ′ must correspond to a ground

state with particle density n′(r) and external potential V ′
ext(r), then the total energy functional

E[(n′(r))] will be,

E[n′(r)] = 〈Ψ′|H|Ψ′〉

= F [n′(r)] +

∫
V ′
ext(r)n

′(r)dr

> 〈Ψ0|H|Ψ0〉

> F [n(r)] +

∫
Vext(r)n(r)dr

> E[n(r)]

(2.19)

Thus the energy functional E[(n(r))], evaluated for the exact ground state density n0(r) is

certainly lower than the value of this functional for any other density E[(n(r))]. Therefore by

minimizing the total energy functional of the system with respect to variations in the density

n(r), one would find the exact ground state density and energy.
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2.9 Kohn-Sham Formulation of Density Functional The-

ory

It is the Kohn-Sham (KS) [6] approach that puts Hohenberg-Kohn theorems into practical

use and makes DFT calculations possible with even a personal computer. They proposed

a method for computing the most important part of the kinetic energy functional to good

accuracy. The idea is to replace the original many-body system by an auxiliary independent-

particle system and assume that the two systems have exactly the same ground state density.

In this approach, it maps the original interacting system with real potential onto a fictitious

non-interacting system where the electrons move within an effective Kohn-Sham single-particle

potential VKS(r). For the auxiliary independent-particle system, the auxiliary Hamiltonian is:

HKS = − ~2

2me

∇2 + VKS(r) (2.20)

For a system with N independent electrons, the ground state is obtained by solving the N

one-electron Schrödinger equations,

[− ~2

2me

∇2 + VKS(r)]φi(r) = εiφi(r) (2.21)

where there is one electron in each of the N orbitals φi(r) with the lowest eigen values εi. The

single particle equations (2.21) are referred to as Kohn-Sham equations and the single particle

orbitals φi(r) which are the solutions of the above equations are called Kohn-Sham orbitals.

The density of the auxiliary system is constructed from,

n(r) =
N∑
i=1

|φi(r)|2 (2.22)

which is subject to the conservation condition:
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∫
n(r)dr = N (2.23)

The non-interacting independent-particle kinetic energy TS[n(r)] is given by,

TS[n(r)] = − ~2

2me

N∑
i=1

∫
φ∗
i (r)∇2φi(r)d(r)

=
N∑
i=1

〈φi(r)| −
~2

2me

∇2|φi(r)〉

(2.24)

Then the universal functional F [n(r)] can be rewritten as,

F [n(r)] = Ts[n(r)] + EH [n(r)] (2.25)

where EH [n(r)] is the electron-electron Coulomb interaction energy (called Hartree energy),

EH [n(r)] =
e2

2

∫ ∫
n(r)n′(r)

|r− r′|
drdr′

=
e2

2

∑
i,j(i6=j)

〈φi(r)φj(r)|
1

|r− r′|
|φi(r)φj(r)〉

(2.26)

Now the Hohenberg-Kohn functional E[n(r)] is written as,

E[n(r)] = Ts[n(r)] + EH [n(r)] +

∫
Vext(r)n(r)dr+ EXC [n(r)] (2.27)

Here, EXC [n(r)] is the exchange-correlation functional [7] [8], energy, which contains the dif-

ference between the exact and non-interacting kinetic energies.

Since the ground state energy of a many-electron system can be obtained by minimizing the

energy functional E[n(r)] = F [n(r)]+
∫
n(r)Vext(r)dr, subject to the constraint that the number

of electrons N is conserved,
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δ{F [n(r)] +
∫
n(r)Vext(r)dr− µ(

∫
n(r)d(r)−N)} = 0 (2.28)

The results which we get from the above equation is,

µ =
δF [n(r)]

δn(r)
+ Vext(r)

=
δTS[n(r)]

δn(r)
+ VKS(r)

(2.29)

where µ is the chemical potential.

Now, Kohn Sham single particle potential VKS(r) is given by,

VKS(r) = Vext(r) + VH(r, n(r)) + VXC(r, n(r))

= Vext(r) +
δEH [n(r)]

δn(r)
+
δEXC [n(r)]

δn(r)

(2.30)

From the equations (2.28) and (2.30), the Hartree potential VH(r) can be expressed as,

VH(r) =
δEH [n(r)]

δn(r)

=

∫
n(r′)
|r− r′|

dr′
(2.31)

and similarly, the exchange-correlation (XC) potential VXC(r) can also be expressed as,

VXC(r) =
δEXC [n(r)]

δn(r)
(2.32)

Using the well-known KS equations the KS potential can be expressed as,

VKS(r) = Vext(r) +

∫
n(r′)
|r− r′|

dr′+ δEXC [n(r)]

δn(r)
(2.33)
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Since the KS potential is a function of the density, which is obtained from equation (2.22) and

hence depends on all the single-particle states, we need to solve these equations by iteration

until we reach self-consistency.

The KS equations, must be solved self-consistently because, VKS potential is a function of the

density, which is obtained from equation (2.22) as well as all the single-particle KS orbitals.

Solving the KS orbitals is not a significant problem. A more critical issue is the exact form of

EXC [n(r)] which is unknown. It is very important to have an accurate (XC) energy functional

EXC [n(r)] in order to give a satisfactory description of a realistic condensed-matter system.

The most widely used approximations for the XC potential are the local density approximation

(LDA), the generalized-gradient approximation (GGA) and hybrid functionals.

2.10 The Exchange-Correlation Approximations

2.10.1 The Local Density Approximation (LDA)

The simplest physical way to approximate the exchange-correlation energy is the Local Density

Approximation (LDA). Although the exact XC energy functional EXC [n(r)] is very complicated,

simplest but successful approximations to it have been made by Kohn and Sham [6], which not

only to predict various properties of many systems reasonably well but also greatly reduce

computational costs. It leads to the wide use of DFT for electronic structure calculations. In

this approximation two assumptions are made: i) the local exchange-correlation energy per

particle only depends on the local density (hence the name of the approximation) and ii) is

equal to the exchange-correlation energy per particle of a homogeneous electron gas (HEG),

that has the same density, in a neutralizing positive background (jellium background). The

total exchange-correlation functional EXC [n(r)] can be written as,

ELDA
XC [n(r)] =

∫
n(r)εXC [n(r)]dr (2.34)
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where εXC [n(r)] is the exchange-correlation energy per particle of a uniform electron gas of

density n(r). So, the XC potential [9] may be written as,

V LDA
XC (r) =

δELDA
XC [n(r)]

δn(r)

= εXC [n(r)] + n(r)
dεXC [n(r)]

dn(r)

(2.35)

For unpolarized HEG system, the quantity εXC [n(r)] can be further split into exchange and

correlation contributions,

εXC [n(r)] = εX [n(r)] + εC [n(r)] (2.36)

The exchange energy, εX [n(r)], represents the exchange energy of an electron in a homogeneous

electron gas. It is derived analytically by Dirac [10] and is given by,

εX [n(r)] = −3

4
e2(

3n(r)

π
)1�3 (2.37)

Analytic expressions for the correlation energy, εC [n(r)] of the HEG is unknown except in the

high and low density limits corresponding to infinitely weak and infinitely strong correlations.

The expression of the correlation energy density of the HEG at high density limit has the form,

εhX [n(r)] = A1 + A2rs + [A3 + A4rs] ln rs (2.38)

and the low density limit takes the form,

εlX [n(r)] =
1

2
[
a1
rs

+
a2

r3�2
s

+ ...] (2.39)

where the Wigner-Seitz radius rs is related to the density as,
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4

3
πr3s =

1

n
(2.40)

Accurate values of the correlation energy density at intermediate density can be obtained

from quantum Monte Carlo (QMC) calculations [11]. Most local density approximations to

the correlation energy density interpolate these accurate values from QMC calculations while

reproducing the exactly known limiting behavior. Depending on the analytic forms used for

εC [n(r)], different local density approximations were proposed including Vosko-Wilk-Nusair [12]

(VWM), Perdew-Zunger [13] (PZ81), Cole-Perdew [14] (CP) and Perdew-Wang [15] (PW92).

In general, LDA almost always gives a correct picture of binding trends across the periodic

table. The structures, bond lengths, vibrational energies, phonon spectra and other properties

are predicted correctly, or with a systematic deviation. Binding energies of solids and molecules

are usually overestimated, which leads to an underestimation of the bond lengths as well as the

band gaps.

2.10.2 The Generalized Gradient Approximation (GGA)

The exchange-correlation energy of inhomogeneous charge density can be significantly different

from the HEG result. But, LDA neglects the inhomogeneities of the real charge density. So, one

can try to improve the LDA expression for the exchange-correlation energy, equation (2.34), by

introducing density gradient corrections and higher spatial derivatives of the electron density

and this gives better results than LDA in many cases. In a generalized gradient approximation,

the functional depends on the density and its gradient,

EGGA
XC [n(r)] =

∫
n(r)εXC [n(r), |On(r)|]dr (2.41)

Three most widely used GGAs are the forms proposed by Becke [16] (B88), Perdew et al. [17],

and Perdew, Burke and Enzerhof [18] (PBE). In comparison to LDA, GGA tend to improve

total energies, atomization energies, energy barriers and structural energy differences [18], while
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retaining all the correct features of LDA. GGA expand and soften bonds, an effect that some-

times corrects and sometimes overcorrects the LDA prediction. Especially in systems where

the charge density is rapidly varying, GGA works better than LDA.

2.10.3 The Hybrid Functional

The LDA or GGA approximation can predict the structural properties such as lattice constants

and bulk moduli accurately, but these approximations give lower accurate results for the elec-

tronic properties such as band gaps. Further improvements in the description of band gaps is

achieved by introducing the so-called hybrid functionals [19] which are obtained by admixing

a fixed amount of the Hartree-Fock (HF) exchange to an explicit density functional. which

takes the effect of Screened Coulomb potential for the exchange interaction. The exchange

potential employed in HSE06 is divided into short- and long-range parts, and HF exchange

is mixed with Perdew-Burke-Ernzerhof (PBE) exchange in the short-range part. The form of

HSE exchange-correlation functional may be expressed as,

EHSE
XC = aEHF,SR

X + (1− a)EPBE,SR
X + EPBE,LR

X + EPBE
C [n] (2.42)

where EHF,SR
X and EPBE,SR

X are the short range and EPBE,LR
X is the long range exchange interac-

tions. This method fulfills the need for a universally applicable method that is computationally

feasible for a wide range of systems and nowadays becomes a popular choice for calculating the

structural properties and the band gaps.

2.11 Methods for Electronic Structure Calculations

There are a number of methods to solve the single-particle Kohn-Sham equation (2.21) and to

obtain the eigen values (band structure) and eigen functions. Among these methods, some are

based on k-space approach others are real space approach. In this section we will briefly discuss

the some of the most popular methods that are used to calculate the electronic band structure.
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2.11.1 Plane Wave Pseudopotential Method

Till now, we have shown how to determine the single-particle wave functions by solving the

many-body Schrödinger equation for electrons in a solid using proper approximations. When

actually solving the single-particle equations in a solid, we need to specify the ionic potential.

For an atom in the solid, we only deal with the valence electrons as the core electrons are mostly

unaffected. These valence electrons actively participate in determining the most of the chemical

and physical properties of molecules and solids. It is well known that the contribution of the

valence states to the total electron density is negligible within the core region and dominant

beyond it.To separate the valence and core electron states, a highly effective approach has been

developed which is the well known pseudopotential method. This method was developed by

Phillips and Kleinman [8] which allows us to take the core electrons out of the picture and to

create a smoother potential for the valence electrons.

In order to develop the pseudopotential for a specific atom, let us separate explicitly the single-

particle states into valence and core sets, denoted as |ψv〉 and |ψc〉 respectively. These states

satisfy the single particle Schrödinger equations with an approximate potential V SP which

includes the external potential due to the nucleus as well as all the other terms arising from

the electron-electron interactions.

Now, a new set of single-particle valence states |φv〉 can be defined as,

|ψv〉 = |φv〉+
∑
c

αc|ψc(r)〉 (2.43)

where αc can be determined from the condition that |ψv〉 and |ψc〉 are orthogonal to each other

i.e 〈ψc|ψv〉 = αcδcv, which gives αc = −〈ψv|φc〉.

Operating the single-particle Hamiltonian HSP on the new wave functions, we get,

HSP [|φv〉+
∑
c

αc|ψc(r)〉] = εv[|φv〉+
∑
c

αc|ψc(r)〉] (2.44)
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For single particle states of the valence and core electrons, we can write,

HSP |ψc〉 = εc|ψc〉 (2.45)

HSP |ψv〉 = εv|ψv〉 (2.46)

From the equations (2.43) and (2.44), we obtain,

[HSP +
∑
c

(εv − εc)|ψc〉〈ψc|]|φv〉 = εv|φv〉 (2.47)

Therefore, the new states |φv〉 obey a single-particle equation with a modified potential, but

have the same eigen values εv as the original valence states |ψv〉. The modified potential for

these states is called the “pseudopotential” shown in Fig. 2.1, which can be expressed as,

V PS = V SP +
∑
c

(εv − εc)|ψc〉〈ψc| (2.48)

and the corresponding, new states |φv〉’s are called “pseudo-wave functions”. These new va-

lence states project out of the valence wave functions any overlap they have with the core

wave functions, thereby having zero overlap with the core states. One can say, through the

pseudopotential formulation, we have created a new set of valence states, which experience a

weaker potential near the atomic nucleus, but the proper ionic potential away from the core

region. Since it is this region in which the valence electrons interact to form bonds that hold

the solid together, the pseudo-wave functions preserve all the physical and chemical properties

of solids.

Based on the concept of pseudo-potential techniques several methods have been developed to

obtain the electronic structure of molecule and solids more accurately. One of the main aims

to produce the pseudo-potential is to construct the pseudo-wave functions smoother as well as

accurate to make the calculations easier and to get the correct electronic structure of the solids.

There are many pseudopotential techniques, one of them is norm-conserving pseudopotential.
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The norm-conserving pseudo wave functions are normalized and are solutions of the model

pseudo-potential which preserve all the characteristics of valence electrons in an all electron

calculations. The valence pseudo-wave functions satisfy the orthonormal conditions as,

〈ψσ,PS
i |ψσ′,PS

j 〉 = δijδσσ′ (2.49)

Therefore the single particle Schrödinger equations would have the form,

Hσ,SP |ψσ,SP
i 〉 = εi|ψσ,SP

i 〉 (2.50)

where, Hσ,SP is the Kohn-Sham Hamiltonian with pseudo-potential approximation. There are

certain conditions, imposed during the formation of norm-conserving pseudo-potentials as sug-

gested by Harman, Schluter and Chiang (HSC) [20]: one electron Schrödinger equations with

pseudo-wave functions are only valid beyond a chosen core radius (Rc), The integrated charge

inside Rc for each wave function satisfies the norm-conservation and the logarithmic deriva-

tives of all electron pseudo-wave functions are satisfied at (Rc). The pseudo-wave functions

constructed with these conditions can well describe the strongly localized systems (3d rare-

earth elements) but are no more good to describe the light elements (e.g. first row elements

of periodic table). A different approach known as ultrasoft-pseudopotential, first developed by

Vanderbilt [21] where the norm-conserving constraint is relaxed and the pseudo-wave functions

become smooth with an auxiliary function around each ion core that includes the rapidly vary-

ing part of the density. In this method a new form of nonlocal-potential is taken that involves

a smooth function φ = rψ which is not norm-conserving. This potentials need very large cutoff

energies for localized electrons.The advantage of relaxing the normconserving condition is that

each smooth pseudo-wave function may be formed independently with a chosen cutoff radius

which is much larger than that of norm-conserving pseudo-potentials.
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Figure 2.1: Schematic representation of the construction of the pseudo-wave function φ(r)

and pseudopotential V PS(r), beginning with the real valence wave function φ(r) and Coulomb

potential V Coul(r); (Rc) is the cutoff radius beyond which the wave function and potential

are not affected (taken from Atomic and Electronic Structure of Solids, E Kaxiras, Cambridge

University Press) [8].
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2.11.2 Projector Augmented Waves (PAWs) Method

Another kind of pseudo-potential technique is the projector augmented wave (PAW) method

introduced by Blöchl [22] where the projectors and auxiliary localized functions are introduced

in the wave functions. This approach retains the all-electron character, but it includes a de-

composition of the all-electron (AE) wave function in terms of a smooth pseudo-wave (PS)

function, and a rapidly varying contribution localized within the core region. So here the total

wave function is constructed by a combination of the valence wave functions ψ̃v
i (r) and a linear

transformation function that relates the set of all-electron valence function ψv
j (r) to ψ̃

v
i (r), that

is

|ψv
j 〉 = |ψ̃v

j 〉+
∑
i

(|φi〉 − |φ̃i〉)〈p̃i|Ψ̃n〉 (2.51)

The index i is a shorthand for the atomic site R, the angular momentum numbers L = (l,m)

and an additional index k referring to the reference energy εkl. The all electron partial waves

φi are the solutions of the radial Schrödinger equation for the isolated atom, and the PS partial

waves φ̃i are are equivalent to the AE partial waves outside a core radius Rc and match with

value and derivative at Rc. The projector function p̃i for each PS partial wave localized within

the core radius, obeys the relation 〈p̃i|φ̃i〉 = δij. From equation (2.51), it is possible to show

that in the PAW method, the AE charge density is given by,

n(r) = ñ(r) + n1(r)− ñ1(r) (2.52)

where, n(r) is the soft pseudo-charge density calculated directly from the pseudo wave functions

on a plane wave grid:

ñ(r) =
∑
i

fi|ψ̃i(r)|2 (2.53)
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and the on-site charge densities n1(r) and ñ1(r) are treated on a radial support grids localized

around each atom. They are defined as,

n1(r) =
∑
n,(ij)

fn〈Ψ̃n|p̃i〉〈φi(r)|φj(r)〉〈p̃j|Ψ̃n〉 (2.54)

and

ñ1(r) =
∑
n,(ij)

fn〈Ψ̃n|p̃i〉〈φ̃i(r)|φ̃j(r)〉〈p̃j|Ψ̃n〉 (2.55)

It is to be noted that the charge density ñ1(r) is exactly the same as ñ(r) within the augmenta-

tion spheres around each atom. In PAW approach, an additional density, called compensation

charge density is added to both auxiliary densities ñ(r) and ñ1(r) so that the multi-pole mo-

ments of the terms ñ(r)− ñ1(r) in equation (2.52) vanish.

2.11.3 The Tight-Binding Approximation

The tight binding approximation (TBA) is the simplest method for calculating band structures

and ground state energy, both conceptually and computationally which was first introduced by

Blöch [23]. The basic assumption in TBA is to expand the wave function in terms of atomic

orbitals of isolated atoms at each atomic site, or in terms of other local orbitals (e.g.: Wannier

functions). This method is also referred to as linear combination of atomic orbital (LCAO)

approach and applies to non-crystalline materials and crystalline materials.

Let us first start with a set of atomic wave functions, φl(r− ti) where ti is the position of atom

with i in the periodic unit cell, and φl(r) is one of the atomic states associated with this atom.

The index l represent the values for the angular momentum character s, p, d, ... etc.

A basis state Φk,l,i(r) with wave vector k (restricted to the first Brillouin zone) can be con-

structed from the atomic orbitals φl(r− ti), according to Blöch theorem,
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Φk,l,i(r) =
1√
N

∑
R′

eik.R
′
φl(r− ti −R′) (2.56)

where N is the total number of unit cells in the crystal and R′ is the lattice vector of the

periodic lattice. It is easy to show that Φk,l,i(r) satisfies the Blöch theorem.

Φk,l,i(r+R) =
1√
N

∑
R′

eik.(R
′−R)eik.Rφl((r+R)− ti −R′)

= eik.R
1√
N

∑
R′

eik.(R
′−R)φl((r+R)− ti −R′)

= eik.R
1√
N

∑
R′′

eik.R
′′
φl((r− ti −R′′)

= eik.RΦk,l,i(r)

(2.57)

Now, we can expand the single-particle eigen states in this basis as,

ψn
k(r) =

∑
i,j

cnk,l,iΦk,l,i(r) (2.58)

The coefficients cnk,l,i can be determined assuming that ψn
k(r) are solutions of single particle

Schrödinger equations,

HSPψn
k(r) = εnkψ

n
k(r)

⇒
∑
l,i

[〈Φk,m,j|HSP |Φk,l,i〉 − εnk〈Φk,m,j|Φk,l,i〉] = 0
(2.59)

Considering the orthogonality conditions,

〈ψn
k|ψn

k′〉 = δ(k− k′) (2.60)

where we are the values of k,k′ are restricted to the first Brillouin zone. So, we have to solve

the secular equation (2.59) which has size equal to the number of solutions (bands) that we can
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expect at each k-point. In order to solve this linear system we need to be able to evaluate the

following integrals,

〈Φk,m,j|Φk,l,i〉 =
∑
R

eik.R〈φm(r− tj)|φl(r− ti −R)〉 (2.61)

The last expression in equation (2.61) is called the “overlap matrix elements” between atomic

states. Similar to the way we have evaluated the above integral, we obtain,

〈Φk,m,j|HSP |Φk,l,i〉 =
∑
R

eik.R〈φm(r− tj)|HSP |φl(r− ti −R)〉 (2.62)

and the brackets on the right-hand side of equation (2.62) is called the “Hamiltonian matrix

elements” between atomic states.

At this point we introduce the most important approximation of TBA: the overlap matrix

elements in equation (2.61) is non-zero only for the same orbitals on the same atom i.e. we use

the orthogonality condition between different orbitals,

〈φm(r− tj)|φl(r− ti −R)〉 = δlmδijδ(R) (2.63)

Similarly, we take the Hamiltonian matrix elements in equation (2.62) to be non-zero only if

the orbitals are on the same atom, which are called the “on-site energies”:

〈φm(r− tj)|HSP |φl(r− ti −R)〉 = δlmδijδ(R)εl (2.64)

and if the orbitals are from the nearest neighbor atoms, then they (Vlm,ij) are called “hopping

matrix elements”:

〈φm(r− tj)|HSP |φl(r− ti −R)〉 = δ((tj − ti −R)− dnn)Vlm,ij (2.65)

where, dnn is the position vector of nearest neighbor atoms from the reference atom.
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Even with this approximation, the values of the matrix elements are to be calculated. The

parametrization of the Hamiltonian matrix is efficiently started with the work of Harrison [24]

and still it is continuing as an active area of research. There is also a two-center approximation

introduced by Slater and Koster [25] for calculating these matrix elements.

2.11.4 Wannier Functions

The Blöch wave functions can also be expanded using local orbitals instead of atomic orbitals

(in tight binding method). Wannier functions, first proposed by G. Wannier [26], is a candidate

of such local orbitals, although they are not localized in some cases when the bandwidths are

large, but the Wannier functions are not like the atomic wave functions at all. Technically,

Wannier functions are Fourier transformations of Blöch wave functions Φk,n(r). Since Φk,n(r)

is periodic in the reciprocal lattice, i.e., Φk+G,n(r) = Φk,n(r), where G is a reciprocal lattice

vector, Φk,n(r) can be expanded in plane waves as,

Φk,n(r) =
∑
R

wn(r−R)eik.R (2.66)

where, the coefficients wn(r−R) are Wannier functions and can be obtained by inverse trans-

formation,

wn(r−R) =
Vcell
(2π)3

∫
BZ

e−ik.RΦk,n(r)dk (2.67)

where Vcell is the volume of the real-space primitive cell of the crystal. The Wannier functions

are not unique because any Blöch function Φk,n(r) doesnt undergo a “gauge transformation”,

Φk,n(r) → Φ̃k,n(r) = eiφn(k)Φk,n(r) (2.68)

In addition to the freedom in the choice of phase factor φn(k), there is also a degree of freedom

associated with the choice of a full unitary matrix Uk
nm, which transforms the N Blöch wave
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functions Φk,n(r) between themselves at every wave vector k, but the electronic energy func-

tional (in an insulator) remains invariant. The most general form of the Wannier functions is

given by,

wn(r−R) =
Vcell
(2π)3

∫
BZ

N∑
m=1

Uk
nme

−ik.RΦmk(r)dk (2.69)

Uk is a unitary matrix that mixes the Blöch states at each k point. Uk is not uniquely defined

and different choices will lead to wave functions with varying spatial localizations. A widely used

way of constructing Wannier functions is the maximally localized Wannier functions proposed

by Vanderbilt and coworkers [27] [28], in which the quantity

Ω =
N∑

n=1

[〈r2〉n − 〈r〉2n] (2.70)

is minimized by choosing appropriate Uk, where 〈...〉 in is the expectation value over the n-th

Wannier function in the unit cell.

The Wannier functions wn(r−R) are completely orthogonal to each other. so, one can write,

∫
wm(r−Ri)wn(r−Rj) = δmnδij (2.71)

In the tight binding approach, if Wannier functions are used as the local orbitals, the overlap

matrix and hopping matrix elements are greatly simplified. This is a main advantage to use

Wannier functions in tight binding method.

In practice, Wannier functions are constructed from the results of DFT calculations and after

that those are used as the local orbitals in tight binding method. The hopping parameters

and the on-site energies are obtained by fitting the bands from the tight binding method to

the band structures of DFT calculations. The hopping parameters are then used to construct

model Hamiltonians to study many-body systems.
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Chapter 3

Effective Mass Driven Structural

Transition in a Mn-Doped ZnS

Nanoplatelet

3.1 Introduction

Among binary semiconductors, formed by elements of the III-V and II-VI groups, one finds

that the more ionic members favor the wurtzite structure, while the covalent ones are found

to favor the zinc blende form [1], with the other form (zinc blende and wurtzite, respectively)

being available as a metastable state with an energy only a few meV per atom higher than

the ground state [2]. Since physical and chemical properties of any material depend critically

on the specific crystal structure, such a low-lying metastable state holds out the interesting

possibility of tilting the energy balance in favor of the metastable phase even under small per-

turbations, thereby drastically altering material properties. The strong interplay between the

structure of binary semiconductors and its consequent properties has been actively investigated

for bulk materials over several decades now, using external parameters such as pressure and

temperature [3]. At the nano regime, the large surface to volume ratio provides additional
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control parameters that have been effectively used in recent times to tune the structure of such

binary semiconductor nanocrystals; such crystal structure transformations have been achieved

by tuning growth conditions [4], choice of surface ligands [5] [6] or even just the size of the

nanoparticles [7]. These results are easily understood in terms of the large contribution of the

surface energy to the total energy of a nanoparticle in the small size regime. For example,

the binding energy of a ligand attachment on the surface of a nanoparticle can be significantly

different depending on its crystal structure [5]; thus, attaching ligands to most of the surface

sites can significantly alter the total energy of a nanoparticle depending on its structure. In-

terestingly, there has been a recent report of a different class of structural transitions, namely;

reversible structural transformation of ZnS nanoplatelets that cannot be understood in terms

of such relatively simple energy considerations, because, among other reasons, it is reported to

be triggered by the smallest level of reversible doping of Mn in the host [8]. We summarize

below the essential and striking aspects of the experimental observations reported in Ref. [8].

It is found [8] that different sizes of the undoped ZnS nanoplatelets could be formed under

certain synthesis conditions of carrying out the reaction in a solvent at an elevated temperature

of 300 ◦C. These nanoplatelets invariably formed in the wurtzite structure independent of

any subsequent temperature cycling of the reaction mixture or of the extracted nanocrystals

redispersed in the solvent. Surprisingly, however, in the presence of a low concentration of Mn2+

ions in the solvent with redispersed ZnS nanoplatelets, it is found that the ZnS nanoplatelets

transformed to the zinc blende structure at an elevated temperature of the solvent (< 180

◦C) accompanied by the insertion of Mn2+ ions into the host ZnS matrix, as evidenced from

the appearance of the characteristic intense Mn2+ photo luminescence emission on exciting

the ZnS host and from electron paramagnetic resonance (EPR) studies [8]. Curiously, this

transformation is found to be reversible with respect to a cycling of the temperature with

Mn2+ ions being ejected from the host ZnS nanoplatelet and the crystal structure of the host

reverting back to the wurtzite one on lowering the temperature below 180 ◦C. It is also reported

in Ref. [8] that similar effects are not observed either for spherical ZnS nanoparticles as well as

ZnS nanoplatelets with sizes larger than 14 nm in diameter.
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It is to be noted that there is no evidence of stacking faults in these nanocrystals in either

of the two crystallographic forms, though transformations between wurtzite and zinc blende

structures are known [9] to be usually driven by such stacking faults. Though a wurtzite to zinc

blende transformation involving carrier doping has been suggested on the basis of theoretical

investigations in certain bulk semiconductors [10] [11], such a mechanism cannot be invoked

here, since Mn2+ ions substitute the Zn ions isovalently without involving any carrier doping. In

order to understand the microscopic origin of such an unusual phase transformation, we use first

principle electronic structure calculations carried out within the framework of density functional

theory. In this chapter, the results show that at a fundamental level, quantum confinement

effects at the nanoscale are responsible for the observed phenomenon, the two structure types

being discriminated by Mn incorporation/ejection essentially due to significantly different hole

effective masses in the zinc blende and wurtzite phases. Our results also explain the absence

of any such structural transformation above a certain size of the nanocrystal.

3.2 Methodology

Nanoplatelets are constructed in the present investigation in accordance with the experimental

observations [9] as follows: The growth direction for the wurtzite nanoplatelet has been taken

as 〈111〉 as observed experimentally, while both directions 〈110〉 and 〈111〉 are studied for the

zinc blende nanoplatelet. Two different nanoplatelets with diameters of 0.75 nm and 1.5 nm

have been investigated in the present study; both these platelets have 4 monolayer thickness.

The results are compared with corresponding results for the bulk. The bulk lattice constants

of a = 5.41 Å for the zinc blende case [12] as well as a = 3.82 Å and c = 6.24 Å for the wurtzite

case [12] are used for constructing the supercells corresponding to nanoplatelets of a given size.

12 Å of vacuum is used along the x, y and z directions to ensure negligible interactions between

the supercell units. We use projected augmented wave potentials [13] within a plane wave

implementation of density functional theory in VASP code [14] with the LDA approximation [15]

for the exchange-correlation functional. A plane wave cutoff energy for the basis sets of 280

eV has been used for the electronic structure calculations which are performed at Γ point only.
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Besides two different sized nanoplatelets for each structure type and two differently oriented

platelets for the zinc blende, we had to carry out a large number of calculations for each

such constructed nanoplatelet, placing a Mn2+ ion at each of the nonequivalent Zn2+ sites to

study the impact of Mn incorporation in these nanoplatelets. However, we have not attempted

calculations with multiple Zn sites being simultaneously replaced by Mn ions, since experimental

findings indicated [8] that even a very dilute presence of Mn is sufficient to cause the structural

transformation; moreover, the number of symmetry inequivalent positions for incorporating

even two Mn ions in a given nanoplatelet will make the number of calculations hopelessly large.

It is to be noted that a complete optimization of all internal coordinates within the supercell for

every doped and undoped nanoplatelet is carried out till the force on each atom is less than 0.005

eV/Å. As usual, the surface Zn and S atoms are passivated with pseudo-hydrogens. Spheres of

radii 1 Å are constructed about each atom to calculate the atom and orbital-projected density

of states. We first calculated the formation energy of nanoplatelets as well as that for bulk

ZnS in the two crystallographic forms. Calculated results are found to be in agreement with

experimental observations. For example, the nanoplatelet of 0.75 nm diameter is found to be

the most stable in the wurtzite form compared to the zinc blende form by about 100-200 meV

per atom depending on the specific orientation (〈110〉 or 〈111〉) of the zinc blende nanoplatelets.

In contrast, the zinc blende structure is found to be slightly (by ∼ 3 meV per atom) stabler

compared to the wurtzite structure for the bulk ZnS, thus establishing a structural transition as

a function of size for ZnS. With the correct structure predicted for the undoped nanoplatelets,

we probe the implication of doping Mn in these systems. We note that the formation energy for

one Mn incorporation is given by Ec(ZnS : Mn)−Ec(ZnS)−µZn−µS where µ’s are the chemical

potentials for the corresponding atoms and Ec(ZnS : Mn) and Ec(ZnS) are the total energies

of the nanoplatelets with and without Mn doping in a given crystal structure, indicated by the

subscript c; we use c = w or z to denote the wurtzite or the zinc blende structure, respectively.

Since µZn and µS refer to the atom and therefore, are independent of the structure, it suffices to

compare the relative binding energy, defined as ∆Ec = Ec(ZnS : Mn)−Ec(ZnS), for different

crystal structures and orientations, in order to understand the relative stabilities of different

forms of nanoplatelets. In order to obtain important insights in the reactivity in each case,
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we also analyze the wave function corresponding to the valence band maximum (VBM) or the

highest occupied molecular orbital. In the absence of a common reference frame, the energy

position of the VBM for each case has been determined by referencing its energy to the averaged

electrostatic potential associated with the central atom calculated assuming a unit charge within

a sphere of radius 1 Å.

Figure 3.1: (a) Wurtzite 〈0001〉 and (b) zinc blende 〈110〉 ZnS nanoplatelets of medium size.

Magenta, cyan and red atoms are the Zn atoms which are 0, 1 and 2-fold coordinated with

pseudo-hydrogens.

3.3 Results and Discussion

At the surface of these nanoplatelets, Zn sites are coordinated to either one or two pseudohydro-

gens. Evaluating the binding energy of Mn doping on the surface of the ZnS nanocrystals, we

find that Mn is much more likely to attach itself at a site that has only one pseudo-hydrogen

and three sulphur bonds independent of the structure or the growth direction. In order to

understand the mechanism of Mn incorporation in the experimentally observed zinc blende

〈110〉 oriented nanoplatelets, we have evaluated the relative binding energy of Mn doping at

different surface sites. The dopant sites for the 1.5 nm sized nanoplatelet are shown in Fig.
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Table 3.1: Relative binding energy of Mn at the most stable sites for different sizes of ZnS

nanoplatelets with respect to corresponding wurtzite phase.

Platelet Size ∆Ew(eV) ∆Ez〈110〉(eV) ∆Ez〈110〉(eV)

Small 0 -40 -8

Medium 0 -15 +11

Bulk 0 +5 +5

3.1. Our results show that the relative binding energy is the highest for Mn incorporation

at a near edge position. This would suggest that the Mn incorporation in ZnS nanoplatelets

may begin with the incorporation of Mn at a near edge site, as the preferred site. This finds

experimental support in the observation that the Mn doping induced phase transformation

begins near the edge of the nanocrystal, as evidenced by transmission electron micrograph of

nanoplatelets with arrested, incomplete structural transformation reported in ref. [8]. However,

experimental evidence points to eventual incorporation of the Mn ion into a subsurface tetra-

hedrally coordinated site in the ground state as deduced on the basis of EPR results [8]. In

order to understand this result specifically, and the relative binding energy of Mn at various

sites of different nanoplatelets in general, we have carried out a large number of calculations

with Mn at different inequivalent sites of the different nanoplatelets. We have tabulated the

largest binding energy found in each size, namely the small, medium nanoplatelets and the

bulk, for different crystal structures, as shown in Table 3.1; in each size we give the results

with respect to the wurtzite case. Table 3.1 shows that Mn incorporation lowers the energy

the most, for zinc blende nanoplatelets with the 〈110〉 orientation, representing a stability of

40 meV and 15 meV over the wurtzite phase for the small and the medium sized nanoplatelets,

respectively. This reflects accurately the experimentally observed conversion of the undoped

wurtzite nanoplatelet to the zinc blende 〈110〉 oriented nanoplatelets on being doped by Mn;

the strongest binding site for Mn in all these cases is invariably found to be a subsurface site,

in agreement with the EPR evidence.
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Interestingly, the energy stability associated with the formation of the zinc blende structure

on Mn doping is obviously size dependent, with the smallest sized nanoplatelet exhibiting the

maximum stability of 40 meV over the wurtzite nanoplatelet. With an increase in the size to

a 1.5 nm diameter platelet, the energy stability of the zinc blende phase over the wurtzite one

decreases rapidly to 15 meV. While it proved impossible to carry out similar calculations for

larger sized nano-platelets due to computational limitations, we find that for a bulk ZnS system,

Mn incorporation stabilizes the wurtzite structure, reversing the trend observed for the small

nanoplatelets of ZnS. This systematic trend with the size is consistent with the experimental

observation that the crystallographic phase transformation from the wurtzite to the zinc blende

phase does not take place for large sized nanoplatelets. We have further carried out exploratory

investigations on spherical nanoparticles of ZnS; our results indicate that Mn-doped ZnS in the

zinc blende form is not stabilized over the wurtzite form for spherical nanoparticles, once again

consistent with the experimental report [8].

Encouraged by the above mentioned close correspondence between experimental observations

and our results in every aspect, we have attempted to obtain a microscopic understanding of

this size dependent, doping induced structural transition, driven apparently by certain size

dependent, quantum confinement effects. We first analyze the bonding of Mn at the substi-

tutional site by investigating Mn charge density along the Mn-S bond direction for various

cases. We focus on changes in the charge density distribution in the zinc blende structure

compared to the corresponding wurtzite charge density distribution. Fig. 3.2(a) shows the re-

sults for the smallest nanoplatelets considered here. This figure shows that the charge density

for the zinc blende case is substantially depleted near the Mn site, being pushed out towards

the S site along the bond-length compared to the wurtzite case. This clearly establishes a

more covalent Mn-S bond in the zinc blende 〈110〉 nanoplatelet compared to the same sized

wurtzite 〈0001〉 nanoplatelet. The larger sized nanoplatelets show a similar effect, though less

pronounced compared to the case of the smaller sized nanoplatelet. Looking at the bulk case,

we find that one has a reversal of the trend with the charge density being more localized on

the Mn in the zinc blende case, as shown in Fig. 3.2(b). Thus, the enhanced binding energy
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Figure 3.2: Charge density of Mn majority spin antibonding levels with t2 symmetry for (a)

wurtzite (wz) and zinc blende 〈110〉 (zb110) nanoplatelet and (b) wurtzite (wz) and zinc blende

(zb) of bulk ZnS as a function of the distance from Mn along the Mn-S bond-length. In the

inset the difference of the wz and zinc blende charge density of the respective graph is shown.

It should be noted that since the charge density along a short distance of the bond is given,

charge conservation doesnt seem to be apparent from the figure.
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of Mn incorporation in the zinc blende 〈110〉 nanoplatelet (see Table 3.1), responsible for the

structural transformation observed experimentally, is driven by a change in the covalency of

the Mn-S bond in the two crystallographic forms as a function of the nanoplatelet size. The

systematic enhancement of the covalency of the Mn-S bond for the zinc blende structure with

the decreasing size is responsible for the doped nanoplatelet favoring the zinc blende structure

in the small size regime.

The covalency of any given bond is controlled by two parameters, namely the energy difference

and the hopping or the hybridization strength between the two orbitals participating in the

bonding. The hybridization strength is a function of the inter-atomic distance or the bond-

length, the functional form depending on the nature of the orbitals involved. In this specific

case, our calculations show that Mn-S bond-lengths do not change perceptibly between the bulk

and various nanoplatelets; consequently, we do not expect any significant change in the Mn d

S p hybridization strength. Therefore, the reversal of the Mn binding energy trend between

the bulk and nanoplatelets shown in Table 3.1 cannot be associated with any change in the

hopping strength leading to a change in the covalency. In order to understand the effect of

the size on the remaining parameter, which is the energy difference between the Mn d and S

p states, it is important to note here that Mn d levels, being essentially localized in nature,

will not be affected significantly by the size of the cluster [16] [17] [18] [19]. Therefore, we may

consider the energy of Mn d levels to be practically constant for all cases considered here. In

contrast, the S p levels are expected to be strongly influenced by the quantum confinement

effect increasingly for smaller sized clusters [20] [21] [22] [23]. We find a direct evidence of this

quantum confinement effect in the energy position of the VBM with dominantly S p character.

Valence band maxima referenced to the average electrostatic potential at the central Zn site

for different cases are given in Table 3.2, exhibiting a pronounced dependence on the size for

both crystallographic forms. Each type of system, be it wurtzite, zinc blende 〈110〉 or zinc

blende 〈111〉, shows a systematic decrease of the energy of the VBM with a decrease in size.

This can be ascribed to quantum confinement effects as has already been observed for both

the VBM and the conduction band minimum (CBM) [20] [21] [22] [23] for a wide variety of

semiconductor materials. However, it is important to notice that the stabilization of the VBM
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Table 3.2: Positions of VBM of different sizes of nanoplatelets of ZnS as well as that bulk ZnS.

The relative shifts of the VBM in the case of the wurtzite and zinc blende nanodisks with

respect to the bulk values for the same structure have been provided in parentheses.

Platelet Size ∆Ew(eV) ∆Ez〈110〉(eV) ∆Ez〈110〉(eV)

Small 38.480(0.908) 38.530(0.530) 38.446(0.929)

Medium 38.905(0.483) 38.967(0.408) 38.872(0.503)

Bulk 39.388(0.000) 39.375(0.000) 39.375(0.000)

compared to the bulk VBM, shown in brackets in Table 3.2, is more rapid, for the wurtzite

structure and the zinc blende nanoplatelet with 〈111〉 orientation compared to the zinc blende

〈110〉 oriented nanoplatelet. As a consequence, the VBM has the highest energy for the zinc

blende 〈110〉 nanoplatelets (e.g. 38.530 eV for the small size) compared to those with the

wurtzite structure (38.480 eV for the small size) and the zinc blende 〈111〉 one (38.446 eV

for the small size) at any given size. Since Mn d level lies above the VBM, a decreasing size

implies that the energy separation between two will increase more rapidly for the wurtzite

and the zinc blende 〈111〉 nanoplatelets making Mn-S bond more ionic, when compared to

the relatively more covalently bonded Mn-S in the zinc blende 〈110〉 nanoplatelet due to the

smallest Mn d-VBM energy separation in the latter. This is exactly what is reflected in the

difference charge density plot in Fig. 3.2, underlining the enhanced stability of Mn-doped zinc

blende nanoplatelets with 〈110〉 orientation. Thus, we only need to understand the microscopic

origin of the trend of quantum confinement effects on the position of the VBM given in Table

3.2, to obtain a complete understanding of the puzzling phenomenon.

In order to understand the origin of this more pronounced quantum confinement effect of the

VBM for the wurtzite and zinc blende 〈111〉 nanoplatelets compared to the zinc blende 〈110〉

nanoplatelets, we first note that the shift in energies in such confined systems is inversely

related to the relevant effective hole mass. Thus, we have computed the effective hole mass in

several directions for the bulk zinc blende and wurtzite unit cells. However, the confinement in
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nanoplatelets is primarily determined by the effective hole mass in the growth direction, since

we have just four monolayers in thickness defining the smallest dimension in the problem. The

effective hole masses along 〈0001〉 direction in the wurtzite structure and those along the 〈111〉

and 〈110〉 direction in the zinc blende structure are 1.2 me, 1.5 me and 3.5 me, respectively. As

the hole effective mass (1.2 me) for wurtzite along the 〈0001〉 direction and that (1.5 me) for

the zinc blende along the 〈111〉 direction are smaller than that (3.5 me) for zinc blende in the

〈110〉 direction, the VBMs get pushed down more rapidly for the wurtzite and the zinc blende

〈111〉 cases compared to that for the zinc blende 〈110〉 case which is shown schematically in Fig.

3.3, providing the final microscopic explanation of the observed unusual structural transition

in ZnS nanoplatelets induced by Mn doping.

Figure 3.3: Movement of VBMs of wurtzite 〈0001〉 and zinc blende 〈110〉 due to quantum

confinement effect.

3.4 Conclusion

Mn doping in ZnS nanoplatelets has been shown to induce a structural transition from the

wurtzite to the zinc blende phase. We trace the origin of this transition to quantum confinement
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effects, which shift the VBM of the wurtzite and zinc blende polymorphs of ZnS at different

rates as a function of the nanocrystal size, arising from different effective hole masses in the

two structures. This modifies the covalency associated with Mn incorporation and is reflected

in the size-dependent binding energy difference for the two structures. Thus, it appears that

differences in the relevant effective masses in the bulk semiconductor control the Mn-dopant

induced crystal structure transformation in ZnS nanoplatelets via quantum confinement effects.

This fact, though rarely appreciated in the past, must be operational in a large number of other

contexts, besides such structural transformations, since changing covalency of chemical bonds

influences a wide range of chemical properties.
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Chapter 4

3-D to 1-D Quantum Confinement in

ZnS Nanoplatelets as a Function of

Lateral Dimension

4.1 Introduction

Recent advances in growth techniques have led to the growth of two-dimensional platelets of

semiconductors by colloidal methods [1]. The platelets grown by this technique achieve almost

atomic layer precision in the growth of some materials, something which was earlier possible

only in molecular beam epitaxy growth [2]. The other advantage of this technique has been that

one could entirely do away with the substrate and generate free-standing films [3] [4]. Colloidal

nanoparticles have been intensely studied for their optical properties which can be tuned by

size [5] [6] as well as by doping transition metal atoms [7] [8]. The advantage of the nanoplatelets

is the wide variety of their lateral dimensions which results in crystalline nanoplatelets even

though they are only a few monolayers thick. This results in well-resolved emission with

full width at half maximum less than 40 meV even at room temperature [9]. Additionally

fluorescence yields are large as 60% [10]. The materials that have been synthesized in the
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platelet form include various semiconductors such as CdS, CdSe, CdTe, In2Se3, SnS to name

a few [9] [10] [11] [12]. The microscopic considerations which lead to the formation of layered

platelets instead of three-dimensionally confined nanocrystals are still not well understood.

Control on the thickness have been achieved from 4 to 11 monolayers [9]. This leads to strongly

confined excitons which are able even at room temperature.

These materials offer a playground where quantum confinement physics can be probed. We

consider the example of ZnS which has a small Bohr exciton radii and examine the band gap

changes within a parametrized tight binding model as the lateral dimensions of the platelets are

changed. This has been done for several thicknesses. One finds that for sizes of nanoplatelets

with radii atleast 5 Å less than the Bohr exciton radii, the changes in the band gap are small.

As a result of the confinement in the vertical direction, there is however a deviation in the band

gap from it’s bulk value. If we consider each of the thicknesses and subtract out the band gap

at the Bohr exciton radius, we find that all the curves almost collapse onto each other for radii

in the range 18-25 Å and beyond. This implies that one can talk of separability of the potential

in the lateral as well as in the vertical direction only when one has weak confinement in the

lateral direction but not otherwise.

4.2 Methodology

ZnS nanoplatelets which we have studied in his chapter are grown along 〈0001〉 direction for

wurtzite the structure (wz〈0001〉) and two growth directions 〈001〉 and 〈11̄0〉 are considered

for the zinc blende structure (zb〈001〉 and zb〈11̄0〉) shown in Figs. 4.1, 4.2 and 4.3. The

experimental lattice constants are used for generating the nanoplatelets and are equal to a=3.82

Å and c=6.24 Å [13] for wurtzite and a=5.41 Å [13]for the zinc blende structures. We have

started constructing the nanoplatelets from a radius of 3 Å (except for zb〈11̄0〉) and go upto

the bulk limit of 25 Å as this is the Bohr exciton radius for ZnS.

The atoms on the surfaces of the nanoplatelets have dangling bonds which generate surface

states near the band gap region. To get rid of these states, the Zn and S atoms on the surfaces
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Figure 4.1: Crystal structure of wz〈0001〉 ZnS nanoplatelets. Zn, S and pseudo-hydrogens are

shown by magenta, green and orange colours respectively.

b

ac

Figure 4.2: Crystal structure of zb〈001〉 ZnS nanoplatelets. Zn, S and pseudo-hydrogens are

shown by magenta, green and orange colours respectively.

a c

b

Figure 4.3: Crystal structure of zb〈11̄0〉 ZnS nanoplatelets. Zn, S and pseudo-hydrogens are

shown by magenta, green and orange colours respectively.
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of the nanoplatelets are passivated by pseudo-hydrogens with fractional charges 1.5e and 0.5e

respectively [14]. The number of atoms and the corresponding radius for each of the sizes of

nanoplatelets along different growth directions considered in our study are shown in Table 4.1.

For the ab-initio calculation of the electronic structure of these nanoplatelets 12 Å of vacuum

is used along the x, y and z directions to ensure negligible interactions between the supercell

units. We use projected augmented wave potentials [15] within a plane wave implementation of

density functional theory in VASP code [16] with the LDA approximation [17] for the exchange-

correlation functional. We have carried out the same calculation of the nanoplatelets in some

cases using hybrid functionals, HSE06 [18] for the exchange as it can capture the experimental

band gap more accurately in most of the materials whereas LDA usually underestimates the

band gap. A plane wave cutoff energy for the basis sets of 280 eV has been used for the

electronic structure calculations which are performed at Γ point only. All the positions of the

unit cell are relaxed till the force on each atom is less than 0.005 eV/Å.

In order to investigate the variation of band gap as a function of size, we have calculated the

band gaps of the nanoplatelets by tight binding method. The tight binding Hamiltonian is

given by,

H =
∑
il

εila
†
ilail +

∑
ij

∑
lm

(tlmij a
†
ilajm +H.c.) (4.1)

where a†il and ail are the creation and annihilation operators respectively for electrons at the

atomic site, i in the lth orbital. The onsite energy for the orbital l at the site i is given by εil

and the hopping interaction strengths tlmij depend on the type of orbitals and geometry of the

lattice and are parametrized in terms of the Slater-Koster parametrization [19].

To set up the tight binding model for the nanoplatelets, the input parameters namely the onsite

energies and the hopping interaction strengths for Zn and S atoms are derived by fitting the

band dispersion obtained from tight binding Hamiltonian in equation 4.1 to the ab-initio band

dispersions using hybrid functionals for wurtzite and zinc blende structures of bulk ZnS. In order

to determine the appropriate basis functions for the tight binding model of bulk wurtzite and
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Table 4.1: The radius (r) and the corresponding number of atoms (N ) for all the ZnS

nanoplatelets with 4-monolayer in thickness considered in our study.

wz〈0001〉 zb〈001〉 zb〈11̄0〉

r (Å) N N N

3 26 - 17

4 50 - 47

5 56 57 55

6 92 69 75

7 104 93 105

8 140 109 127

9 158 145 161

10 194 169 215

11 218 225 223

12 260 261 245

13 296 317 309

14 368 349 357

15 380 401 407

16 470 473 461

17 494 533 505

18 560 581 563

19 608 637 593

20 692 713 705

21 716 777 729

22 800 873 827

23 842 941 883

24 882 1037 949

25 900 1142 1024
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Figure 4.4: The atom and angular momentum projected partial density of states for Zn and S

atoms of bulk wurtzite ZnS from ab-initio calculations using LDA potentials. Zero of energy

corresponds to the Fermi energy.
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Figure 4.5: The atom and angular momentum projected partial density of states for Zn and S

atoms of bulk zinc blende ZnS from ab-initio calculations using LDA potentials. Zero of energy

corresponds to the Fermi energy.
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zinc blende ZnS, the projected density of states (PDOS) are calculated for both the structures

which are shown in Fig. 4.4 and 4.5. The zero of the energy in the figures is the Fermi energy.

The PDOS show that the dominant contribution is coming from Zn s, d and S p states while

non-zero contribution is coming from other states. So, we setup the tight binding model with

Zn s, p, d and S s, p, d states as the basis states. The ab-initio calculations for the bulk ZnS

are carried out in the frame work of density functional theory in VASP code [16]. Projected

augmented wave [15] potentials are used to solve the electronic structure self-consistently using

a k-mesh of 16×16×16 for both wurtzite and zinc blende structures respectively. Plane wave

cut-off energy for the basis sets of 280 eV are used for both wurtzite and zinc blende structures

respectively. All the positions of the unit cell are relaxed till the force on each atom is less

than 0.005 eV/Å. For the tight binding calculation of the bulk ZnS for both the structures,

we have considered s, p, d orbitals of Zn and S atoms as the basis states. Now, the tight

binding parameters are determined by a least-square error minimization [20] of the bands from

the tight binding Hamiltonian given by equation 4.1 to fit the ab-initio bands. A Harrison’s

type scaling [21] of all the hopping integrals of the form 1/rl+l
′
+1 has been assumed for the

interactions for deviations upto 0.1 Å about the distance at which the hopping interaction

strength is defined while the onsite energies are allowed to vary. Now, the onsite energies of

the passivants and the hopping interaction strengths between the passivants and surface atoms

(Zn and S) are chosen in such a way that the band gaps obtained from the tight binding

calculation of the nanoplatelets reproduce the band gap from the ab-initio calculation using

hybrid functionals considering one size (radius=4 Å) for each nanoplatelet of wz〈0001〉 and

zb〈001〉.

Now, considering the extracted onsite and hopping parameters of the Zn, S and the passivants

the band gap of the nanoplatelets are calculated as a function of radius by a tight binding

method. The s and p orbitals of all the Zn and S atoms in the cluster as well as the s orbital

of the pseudo-hydrogens are considered as basis states. In this model, the contribution to

the Hamiltonian are considered till second neighbors for the Zn and S atoms and for pseudo-

hydrogens, the contribution is taken till first neighbors only in the cluster.
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Table 4.2: Band gaps for different ZnS nanoplatelets with 4-monolayer in thickness considered

in our study at different radii as well as the bulk band gaps from ab-initio calculations using

LDA for the exchange-correlation functional. In brackets the ab-initio band gaps are given

using hybrid functionals. The energies are in eV.

r (Å) wz〈0001〉 r (Å) zb〈001〉 r (Å) zb〈11̄0〉

4 4.79(6.09) 4 5.35(6.93) 5 4.92(6.58)

5 4.62 5 4.82 6 4.73

Bulk 1.95(3.44) Bulk 1.86(3.34)

4.3 Results and Discussion

The ab-initio(LDA) band gaps of small sized ZnS nanoplatelets along different growth directions

considered in our present study are tabulated in Table 4.2. The values for a few cases have

been obtained using hybrid functionals and these have been given in parantheses. To compare

these band gaps with their bulk values, we have also shown the bulk band gaps of wurtzite

and zinc blende ZnS in Table 4.2 obtained within ab-initio calculations using LDA potentials

for the exchange-correlation functional. From the table it is apparent that the band gaps of

the nanoplatelets are much larger than their respective bulk values of 1.95 eV and 1.86 eV for

wurtzite and zinc blende (LDA). These results reveal that, as the lateral dimensions (radius)

of the nanoplatelets is reduced, quantum confinement along the planes of the nanoplatelets is

enhanced which brings about these larger band gaps. Now, one needs to investigate the variation

of band gaps of the considered nanoplatelets as a function of their lateral dimensions (radius).

As the ab-initio calculations for large systems are highly time consuming and expensive, we

have examined the variation of band gap with size of the considered nanoplatelets using the

tight binding model.

In order to obtain the parameters for the tight binding model of nanoplatelets, we fit the tight

binding bands of bulk ZnS for both wurtzite and zinc blende structures to the bands obtained
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Figure 4.6: Comparison of ab-initio band dispersions (blue solid line) for bulk wurtzite ZnS at

its experimental lattice constant, using hybrid functionals and the fitted tight binding bands

(red line with circles), using a basis consisting of Zn s,p,d and S s,p,d states. The zero of energy

is the valence band maximum.
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Figure 4.7: Comparison of ab-initio band dispersions (blue solid line) for bulk zinc blende ZnS

at its experimental lattice constant, using hybrid functionals and the fitted tight binding bands
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is the valence band maximum.
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from ab-initio calculations using hybrid functionals [18] through a least-square error minimiza-

tion process [20]. The superposition of the ab-initio and the tight binding band structures

along various symmetry directions are shown in Figs. 4.6 and 4.7 for wurtzite and zinc blende

structures of bulk ZnS respectively. These figures show that bulk wurtzite and zinc blende

ZnS are direct band gap semiconductors with band gaps of 3.44 eV and 3.34 eV respectively,

almost capturing the experimental values of 3.9 eV and 3.8 eV [22]. The onsite energies and

the Slater-Koster parameters derived from the tight binding fitting are tabulated in Table 4.3

and 4.4 for wurtzite and zinc blende structures of ZnS. Although the parameters have been

extracted by fitting the bulk band dispersions, transferrability is assumed to the nanoregime,

proof of this is discussed later in this chapter. The surface of the nanoplatelets are passivated by

pseudo-hydrogens. In our tight binding model, we use pseudo-hydrogen atoms with s orbitals

on them. The interaction between the pseudo-hydrogens and the surface atoms could modify

the band gap. Hence their choice becomes important.

In our study the onsite energies of the passivating atoms and the Slater-Koster parameters

between the passivants and surface atoms (Zn and S) are chosen in such a way that the band

gaps obtained by the tight binding method with these chosen parameters reproduces the band

gaps obtained from the ab-initio calculations using hybrid functionals for some sizes of the

nanoplatelet. In Fig. 4.8 and 4.9, the density of states (DOS) are plotted from ab-initio cal-

culation using hybrid functionals as well as from tight binding calculations for ZnS wz〈0001〉

and zb〈11̄0〉 nanoplatelets with thickness 4-monolayer of radius 4 Å respectively. As, calcula-

tions using LDA as exchange-correlation functional underestimates the band gap, the ab-initio

calculations are performed using hybrid functionals [18] and the band gaps are found to be

6.09 eV and 6.58 eV for wz〈0001〉 and zb〈11̄0〉. Comparing these values of band gaps with

their respective values 6.08 eV and 6.56 eV from tight binding calculation, the band gaps from

both the calculations are in good agreement with each other. This gives us confidence in the

extracted parameters and we use it to calculate the electronic structure of other sizes of the

nanoplatelets. The extracted onsite energies and the hopping interaction strengths for the pas-

sivants (H1 and H2) are listed in Table 4.5. The parameters obtained from these considered

sizes are used for the other sizes of their respective structures.
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Table 4.3: Parameters obtained from least-square error fitting of the ab-initio using hybrid

functional band structure onto a tight binding model using s, p, d orbitals of Zn and S for bulk

wurtzite of ZnS. The energies are in eV.

Es Ep Ed

Zn 4.64 12.19 -5.97

S -9.23 -0.29 13.78

E(Zn,Zn) E(Zn,S) E(S,S)

ssσ -0.19 -1.29 -0.09

spσ 0.19 2.95 0.38

sdσ 0.00 -0.67 -0.62

ppσ 0.55 2.05 0.39

ppπ -0.01 -0.97 -0.03

pdσ 0.00 -1.89 0.00

pdπ 0.00 2.52 0.00

ddσ 0.00 0.00 0.00

ddπ 0.00 0.00 0.00

ddδ 0.00 0.00 0.00

psσ -0.19 -1.01 -0.38

dsσ 0.00 -1.55 -0.62

dpσ 0.00 0.96 0.00

dpπ 0.00 -0.19 0.00
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Table 4.4: Parameters obtained from least-square error fitting of the ab-initio using hybrid

functional band structure onto a tight binding model using s, p, d orbitals of Zn and S for bulk

zinc blende of ZnS. The energies are in eV.

Es Ep Ed

Zn 1.74 11.07 -6.15

S -7.83 1.80 12.94

E(Zn,Zn) E(Zn,S) E(S,S)

ssσ -0.13 -1.98 -0.02

spσ 0.01 2.98 0.19

sdσ 0.00 -1.01 0.00

ppσ 0.21 4.07 0.55

ppπ -0.12 -0.42 -0.05

pdσ 0.00 -0.68 0.00

pdπ 0.00 2.51 0.00

ddσ 0.00 0.00 0.00

ddπ 0.00 0.00 0.00

ddδ 0.00 0.00 0.00

psσ -0.01 -2.04 -0.19

dsσ 0.00 -1.71 0.00

dpσ 0.00 0.50 0.00

dpπ 0.00 -0.25 0.00
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Figure 4.8: The density of states (DOS) of wz〈0001〉 with radius 4 Å and thickness 4 monolayer

from ab-initio calculations using hybrid functionals (a) and from tight binding calculation (b).

Zero of energy corresponds to the is the valence band maximum.

0

50

100

150

200

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

Energy (eV)

D
en

si
ty

 o
f 

st
at

es
 (

eV
 c

el
l)

-1

(a)

(b)

Figure 4.9: The density of states (DOS) of zb〈11̄0〉 with radius 4 Å and thickness 4 monolayer

from ab-initio calculations using hybrid functionals (a) and from tight binding calculation (b).

Zero of energy corresponds to the is the valence band maximum.
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Table 4.5: Parameters obtained from the fitting of the ab-initio band gap using hybrid functional

to a tight binding model using s, p orbitals of Zn and S atoms and s orbital for pseudo-hydrogens

(H1 and H2) for wurtzite and zinc blende nanoplatelets of ZnS. The energies are in eV.

Es(wz) Es(zb)

H1 -5.0 -4.0

H2 12.0 5.0

E(Zn,H1)wz E(S,H2)wz E(Zn,H1)zb E(S,H2)zb

ssσ -1.80 -2.50 -4.0 -1.00

psσ -2.20 -2.00 -3.0 -2.50

Now, with all the required input parameters (onsite and hopping strengths), the band gaps

of the nanoplatelets of wz〈0001〉, zb〈001〉 and zb〈11̄0〉 are calculated with the tight binding

model considering s, p orbitals of Zn and S atoms as well as s orbital of passivants as the basis

functions. Fig. 4.10, shows the variation of band gaps of wz〈0001〉 with respect to it’s bulk

band gap of 3.44 eV (HSE06) as a function of their lateral dimensions (radius) for four different

thicknesses consisting of 2,4,6 and 8 monolayers. On the other hand, the radii is varied from 3

Å to the Bohr exciton radius (25 Å) as it is the bulk limit of ZnS semiconductors. Each of the

curves in Fig. 4.10, clearly shows that the band gap decreases as the radius of the nanoplatelet

increases. This variation of band gap with radius suggest that as the radius of the nanoplatelet

increases, the quantum confinement in the lateral direction becomes smaller and as a result of

this band gap decreases. For example, Fig. 4.10 shows that the values of band gaps at radius

of 3 Å with thickness 4-monolayers is 6.58 eV which is much larger compared to it’s bulk band

gap of 3.44 eV. It is also observed that, beyond a radius of 15 Å, much less than the Bohr

exciton radius, the variation of band gaps are small. This implies that beyond this radius,

the quantum confinement effect is very small in the lateral direction. In contrast, near the

small radii region, the electrons and holes are confined in all three directions (x,y and z) and

as we go to higher radii, the confinement in the lateral direction (x and y) of the nanoplatelets
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continuously decreases and we have only confinement in the z-direction. So, we move from the

regime of three-dimensional confinement to one where one has one-dimensional confinement.
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Figure 4.10: Variation of band gap of wz〈0001〉 nanoplatelets with respect to the bulk band

gap as a function of their lateral dimension for thicknesses of 2,4 6 and 8-monolayers In the

inset the variation of band gaps shift is shown by subtracting the band gap at Bohr exciton

radius (EB).

In the inset of Fig. 4.10 the variation of band gap shift of wz〈0001〉 with different thicknesses is

shown as a function of their lateral dimension subtracting out the contribution of confinement

(EB) in the growth direction. The contribution to the band gap due to confinement in the

growth direction is taken as the value at the Bohr exciton radii for a given thickness. This is

subtracted out from the band gap shift and plotted in the inset of Fig. 4.1. This subtraction

results in the collapse of the curves for different thicknesses onto each other. This indicates

the separation of the confinement potential, in the growth direction as well as in the lateral

directions and this effect is most prominent above a radius of ∼ 15 Å.

As, we move on to band gap variation of zb〈001〉 and zb〈11̄0〉 nanoplatelets as a function of

lateral dimension (radius) shown in Figs. 4.11 and 4.12 with respect to it’s bulk band gap (3.34

71



0 5 10 15 20 25

Radius (Å)

0

0.5

1

1.5

2

2.5

3

B
an

d 
ga

p 
sh

ift
 (

eV
)

zb<001> 4-monolayer

B
oh

r 
ex

ci
to

n 
ra

di
us

Figure 4.11: Variation of band gap of zb〈001〉 nanoplatelet with respect to the bulk band gap

as a function of it’s lateral dimension for thickness of 4-monolayer.
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Figure 4.12: Variation of band gap of zb〈11̄0〉 nanoplatelet with respect to the bulk band gap

as a function of it’s lateral dimension for thickness of 4-monolayer.

eV), we find that the band gap decreases as the radii increases which means the trend of band

gap variation is similar to wz〈0001〉. Similar explanation holds for these case of zb〈0011̄0〉 and

zb〈11̄0〉 nanoplatelets which have the band gaps of 4.21 eV and 4.52 eV at the radii of 25 Å.

The values of band gaps for the above mentioned nanoplatelets at their smallest sizes are 5.93

eV (radius=5 Å) and 6.94 eV (radius=3 Å). So, in these cases also, near the small size region,
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the excitons are confined in three dimensions and as the radii increases the confinement effect

decreases. Near the Bohr exciton radii, the carriers are confined only in only one direction i.e.

along the growth directions (〈001〉 and 〈11̄0〉). So, we see that there is a 3-D to 1-D quantum

confinement occurs as a function of lateral dimension of the nanoplatelets.

4.4 Conclusion

We have considered a real space tight binding model to study the size dependence of the

band gap of ZnS nanoplatelets. Confinement in both the lateral directions as well as the

vertical direction have been examined. Although one has small variations in the band gap

as the Bohr exciton radius of ZnS is approached in the lateral direction, significant changes

in the band gap are seen due to confinement in the growth direction. We consider platelets

with different number of layers in the growth direction and show that subtracting out the

contribution from confinement in the growth direction results in the curves collapsing onto

each other. This indicates the separability of the potential in the growth direction present even

in a fully atomistic calculation.
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Chapter 5

A Microscopic Model for the Strain

Driven Direct to Indirect Band gap

Transition in Monolayer MoS2 and ZnO

5.1 Introduction

The isolation of the first two dimensional crystal, graphene [1] [2], generated a huge interest in

the study of these materials. A major focus of the research on graphene has been on possible

applications in the electronics industry [3] [4] [5] with the approach to tune the properties

that has been adopted, to be by doping [6]. However, the absence of a band gap has limited

its applications and shifted the focus onto several layered transition metal disulphides and

diselenides such as MoS2, WSe2 etc. [7] [8] [9] [10] MoS2 has been found to have a bulk band

gap of 1.3 eV [11] which is an indirect one. A single monolayer on the other hand is found to

have a direct band gap which is 1.9 eV [12] [13]. Similar thickness dependent changes from a

direct band gap semiconductor to an indirect band gap one have been seen in other materials

such as (Mo/W)X2(X=S, Se, Te) [14] and ZnO [15]. Recently strain has been shown to be an

important parameter in tuning the band gap. Varying the strain from 0% to 9%, the magnitude
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of the band gap has been found to change by almost 1 eV or more in MoS2 [16], depending on

the choice of the exchange-correlation functionals used. In addition a strain dependent direct

to indirect band gap transition was found even at a modest value of the strain [17] [18]. The

strain dependent direct to indirect band gap transition have been seen in other transition metal

dichalcogenides also [19].

In this chapter we consider the case of two materials - MoS2 and ZnO which represent con-

trasting limits of their behavior under biaxial tensile strain at the monolayer limit and study

the variation of the band gap. In both cases one has a direct band gap at zero strain. Under

biaxial tensile strain, a transition is found to take place at just 0.83% in MoS2 to an indirect

band gap material. However a strain of 8% is required in the case of ZnO. Modest values of

strain for bringing about the crossover are preferable for use in various devices, and so it would

be useful to have a microscopic understanding of the differences in the critical strain required

in the two systems.

In order to understand this, we mapped the ab-initio band structure onto a tight binding

model. The highest occupied band at Γ point in MoS2 is found to emerge from Mo d - S p

interactions while that at K point emerges from Mo d - Mo d interactions. The fact that we

have two different sets of interactions contributing to the highest occupied band at the two

symmetry points suggests the role that strain can play in changing the valence band maxima

(VBM) position. The distance (r) dependence of the hopping interactions are expected to

vary as 1/rl+l
′
+1 from an empirical scaling law put forth by Harrison [20]. Here l and l

′
are

the angular momenta of the orbitals which are involved. Accompanying the strain induced

modifications of the interaction strengths, one also has a charge transfer between the atoms

involved. Accounting for these two aspects we find that our tight binding model can capture

the strain driven direct to indirect band gap transition found in MoS2. Moving on to the case

of ZnO, we find that the highest occupied band at Γ and K points are both contributed by

Zn d-O p interactions. Hence, as the same set of interactions contribute to both symmetry

points, tunability to the extent possible in MoS2 cannot be achieved here, as biaxial tensile

strain modifies the energies of the VBM at both symmetry points to almost the same extent.

Hence the present paper provides a facile route to identify systems which can be suitable for
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band gap engineering via strain. The ideas are then tested for three other systems- MoSe2,

WSe2 and BN with success in each case.

5.2 Methodology

The electronic structure of MoS2 and ZnO are calculated within a plane wave implementation

of density functional theory using VASP [21] code. The experimental crystal structure [22]

has been taken in the case of MoS2 and a vacuum of 20 Å is used between successive MoS2

monolayers to minimize interactions between images in the periodic supercell method that we

use. While the lattice parameters are kept fixed at the experimental values [22], the internal

positions are optimized in each case. Projected augmented wave potentials [23] [24] [25] are

used to solve the electronic structures self-consistently using a k-points mesh of 12×12×1.

PBE [26] potentials are used for the exchange-correlation functionals and the calculations are

performed as a function of biaxial tensile strain. The transition from direct to indirect band

gap semiconductor are contrasted with the results for ZnO monolayer. We have used the

experimental lattice constant, a = 3.099 Å for a monolayer of ZnO [27]. The details of the

calculations are similar to what is done for MoS2 except that one use LDA+U potentials with

a U of 8 eV on the Zn d-states. A U of 8 eV has been found to be necessary [28] for correcting

the self-interaction error. In the absence of this correction, one has a significant admixture of

Zn d states in the valence band. The ab-initio band structure calculated at 0% biaxial tensile

strain as well as at 2% biaxial tensile strain for MoS2 are mapped onto a tight binding model

for carrying out further analysis.

In order to determine the appropriate basis functions to be included on Mo and S, the Mo

s, p, d as well as S s, p, d contributions to the partial density of states are shown in Fig. 7.2.

We find that the dominant contributions are from Mo d as well as S p states with non-zero

contributions from other states. Initially we considered a model with Mo d and S p states in the

basis. The radial parts of the basis functions are considered to be maximally localized Wannier

functions [29]. All onsite energies and hopping interaction strengths in this case are determined
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Figure 5.1: The atom and angular momentum projected partial density of states for (a) Mo

and (b) S atoms from ab-initio calculations using GGA potentials. Zero of energy corresponds

to the Fermi energy.

from the interface of VASP to Wannier90 [30]. While an excellent mapping of the ab-initio

band structure is obtained within the model Hamiltonian, one found that the extracted values

of the hopping interaction strengths depended on the pair of orbitals considered, making a

mapping onto a consistent set of Slater-Koster parameters difficult. In another model that we

considered, we included the Mo s, p, d as well as the S s, p, d states in the basis. The tight

binding parameters are determined by a least-square error minimization. A Harrison’s type

scaling [20] of the hopping integrals of the form 1/rl+l
′
+1 has been assumed for the Mo d - Mo d

as well as the Mo d - S p interactions for deviations upto 0.1 Å about the distance at which the

hopping interaction strength is defined. The ideas built from our analysis for ZnO and MoS2

are used to examine the band gap dependence under strain of MoSe2 [31], WSe2 [31] as well as

BN [32]. The experimental lattice constants used are 3.254 Å, 3.325 Å and 2.511 Å for MoSe2,

WSe2 and BN respectively.
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5.3 Results and Discussions

Figure 5.2: Crystal structure of a monolayer of MoS2 where Mo and S atoms are shown by

green and magenta colours.

The structure of monolayer MoS2 is shown in Fig. 5.2. The Mo-S and Mo-Mo(S-S) bond-lengths

at the experimental lattice constants are found to be 2.41 Å and 3.16 Å.
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Figure 5.3: Ab-initio band dispersions (solid line) for monolayer MoS2 at its experimental

lattice constant (0% biaxial tensile strain), using GGA potentials. The fitted tight binding

bands (dashed line), using a basis consisting of Mo d and S p have been superposed. Here

the radial part of the tight binding basis functions correspond to maximally localized Wannier

functions. The zero of energy is the valence band maximum.
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The band dispersions calculated along various symmetry directions for monolayer MoS2 are

given in Fig. 5.3. The VBM is found to be at K point while the highest occupied band at Γ

is found to be 0.12 eV lower. The conduction band bottom is found to be at K point. Hence,

consistent with experiment, one finds a direct band gap of 1.76 eV in MoS2 in our calculations.

This value is slightly underestimated from the experimental value of 1.9 eV [12] [13]. Although

an underestimation of the band gap is a well-known drawback of the density functional theory

based calculations, the small underestimation here seems fortuitous.
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Figure 5.4: The charge density plot for monolayer MoS2 for the highest occupied band at (a)

Γ and (b) at K symmetry points obtained from ab-initio calculations using GGA potentials at

0% strain.

We then go on to examine the nature of the interactions that contribute to the VBM at both

symmetry points Γ and K. This is done by examining the charge density at these two symmetry

points. As evident from Fig. 5.4(a), the highest occupied band at Γ point is found to emerge

from the interactions between the dz2 orbitals on Mo and the pz orbitals on S. The highest

occupied band at K point is on the other hand derived from direct d− d interactions between

the Mo atoms in the plane which is shown in the Fig. 5.4(b).

We then go on to examine the effect of biaxial tensile strain on the electronic structure of MoS2.

At a biaxial tensile strain of 2% (Fig. 5.5), we find that the highest occupied band shifts to

Γ while the lowest unoccupied band remains at K point. The highest occupied band at K
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Figure 5.5: Ab-initio band dispersions (solid line) for monolayer MoS2 at its experimental

lattice constant (2% biaxial tensile strain), using GGA potentials. The fitted tight binding

bands (dashed line), using a basis consisting of Mo d and S p have been superposed. Here

the radial part of the tight binding basis functions correspond to maximally localized Wannier

functions. The zero of energy is the valence band maximum.
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point is now 0.14 eV lower than that at Γ point. Hence biaxial tensile strain has been found

to drive a transition from a direct band gap semiconductor into an indirect band gap one as

has been seen earlier [17] [18]. We then go on to examine what are the changes that take place

in the bond-lengths under strain. A 2% biaxial tensile strain is found to change the in-plane

first neighbor Mo-Mo bond-lengths from 3.16 Å to 3.22 Å, while the Mo-S bond-lengths change

only marginally from 2.41 to 2.42 Å. This has the effect of decreasing the Mo-Mo interactions

while not having any effect on the Mo-S interaction. As a result, the highest occupied band at

K point, which is derived from Mo-Mo interactions moves deeper into the valence band and is

no longer the location of the VBM for the system. As a result we have the observed transition

from a direct to an indirect band gap semiconductor.

In order to understand the role of various microscopic interactions in bringing about the

crossover, we have used the VASP to Wannier90 interface to map the ab-initio band struc-

ture onto a tight binding model with Mo d and S p states as the basis functions. The fitted

tight binding bands are superposed on the ab-initio bands in both Figs. 5.3 and 5.5 for the

unstrained case as well as the 2% strained case. In both cases, one finds that one has a good

description of the ab-initio band structure within the tight binding model. The wave function

corresponding to the highest occupied band at K point is found to have 38% weight on Mo

dx2−y2 and 40% on dxy within our tight binding model. At Γ point the weight is found to be

64% on Mo d3z2−r2 and the remaining is on S pz orbitals. We go on to analyze which are the

microscopic interactions that are responsible for the system becoming an indirect band gap

semiconductor. While at 0% biaxial tensile strain, the VBM at K point is 0.12 eV higher than

that at Γ point, one finds that under 2% biaxial tensile strain the VBM at Γ point is 0.14 eV

higher than that at K point. Hence we have a net movement of 0.26 eV of the energy at Γ

point with respect to the energy at K point. Using the tight binding Hamiltonian for the un-

strained case we find that replacing the onsite energies with those obtained in the 2% strained

case gives us a relative shift of 0.06 eV, just 25% of the observed shift. Using a Harrison type

scaling of the hopping interaction strengths as well as the modified onsite energies does not

give us the required shift that one finds in the ab-initio calculations. Closer analysis reveals

that the hopping interaction strengths have a complicated distance dependence. However it is
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Figure 5.6: Comparison of ab-initio band dispersions (solid line) for monolayer MoS2 at its

experimental lattice constant(0% biaxial tensile strain), using GGA potentials and the fitted

tight binding bands (dashed line), using a basis consisting of Mo s,p,d and S s,p,d states. The

zero of energy is the valence band maximum.
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Figure 5.7: Comparison of ab-initio band dispersions (solid line) for monolayer MoS2 at its

experimental lattice constant(2% biaxial tensile strain), using GGA potentials and the fitted

tight binding bands (dashed line), using a basis consisting of Mo s,p,d and S s,p,d states. The

zero of energy is the valence band maximum.
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clear from this analysis that they contribute to 75% of the energy lowering bringing about the

change from a direct band gap semiconductor to an indirect band gap one.

We then go on to examine if the deviations from a Harrison-type scaling law [20] found in the

tight binding model using maximally localized Wannier functions as the basis, is a consequence

of using a limited set of basis states which includes Mo d and S p states. In order to examine that

we considered a tight binding model with Mo s, p, d as well as S s, p, d states in the basis.The

ab− initio band structure as well as the tight binding band structure are given in Fig. 5.6 for

0% strain. A similar analysis is done for 2% strain also where we kept the Mo d - S p as well

as Mo d - Mo d interactions fixed at their zero strain values and allowed them to scale with

distance according to a Harrison-type scaling law. Other parameters are allowed to vary within

reasonable limits. The fitted parameters are given in Table 6.1 for the 0% case and in Table 5.2

for the 2% case considered. Here Es, Ep and Ed are the onsite energies for the s, p and d levels

on the atoms considered. The hopping interaction strengths have been parametrized in terms

of the Slater-Koster parameters for Mo-Mo (E(Mo,Mo)), Mo-S (E(Mo, S)) and S-S (E(S, S)).

A comparison of the band structure from the tight binding calculation with the ab-initio band

structure for 2 % is shown in Fig. 5.7, and a good fit has been obtained. This shows that the

strain driven direct to indirect band gap transition can be described in terms of scaling of the

interaction strengths assuming a dependence that was first proposed by Harrison.

85



Table 5.1: Parameters obtained from least-square error fitting of the ab-initio band structure

onto a tight binding model using s, p, d orbitals of Mo and S for monolayer MoS2 at 0% biaxial

tensile strain. The energies are in eV.

Es Ep Ed

S 3.99 6.91 2.06

Mo 6.85 -3.32 9.01

E(Mo,Mo) E(Mo,S) E(S,S)

ssσ -0.83 -2.13 -0.10

spσ 1.45 2.23 0.17

sdσ -0.13 -0.98 -0.01

ppσ 0.01 1.72 0.30

ppπ -0.95 -1.00 -0.20

pdσ -0.07 -3.81 -0.89

pdπ 0.02 3.26 0.01

ddσ -0.17 -3.28 -0.07

ddπ 0.01 2.34 0.50

ddδ -0.15 -0.26 -0.97

psσ -1.45 -0.18 -0.17

dsσ -0.13 -0.50 -0.00

dpσ 0.07 2.84 0.89

dpπ -0.02 -1.05 -0.00
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Table 5.2: Parameters obtained from least-square error fitting of the ab-initio band structure

onto a tight binding model using s, p, d orbitals of Mo and S for monolayer MoS2 at 2% biaxial

tensile strain. The energies are in eV.

Es Ep Ed

S 3.55 6.65 2.18

Mo 6.02 -3.82 8.72

E(Mo,Mo) E(Mo,S) E(S,S)

ssσ -0.98 -2.34 -0.01

spσ 1.41 2.01 0.20

sdσ -0.01 -0.80 -0.01

ppσ 0.01 1.51 0.41

ppπ -1.03 -0.94 -0.20

pdσ -0.15 -3.91 -0.80

pdπ 0.00 3.39 0.02

ddσ -0.17 -3.41 -0.41

ddπ 0.01 2.52 0.33

ddδ -0.15 -0.16 -0.99

psσ -1.41 -0.40 -0.20

dsσ -0.01 -0.22 -0.00

dpσ 0.15 2.84 0.80

dpπ -0.01 -1.05 -0.02
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Figure 5.8: Crystal structure of a monolayer of ZnO where Zn and O atoms are shown by green

and red colours.

To compare with MoS2 we considered another layered material, ZnO. This has recently been

shown to exist in a metastable phase [27] and few monolayers on various substrates have been

found to favor a graphitic phase [33]. The structure of monolayer ZnO is shown in Fig. 5.8.

The band dispersions are plotted in Fig. 5.9, along various symmetry directions for monolayer

of ZnO. Here also we find that it is a direct band gap material with its VBM at Γ point.

The lowest unoccupied band is also at Γ point and we find a band gap of 2.71 eV. This is

underestimated from the value of 3.25 eV obtained from hybrid functional calculations, which

we compare with in the absence of experimental information for the band gap. However we do

not perform hybrid functional calculations as a function of strain as it has been seen earlier [15]

that qualitative aspects are captured by LDA+U calculations which are computationally less

demanding. The large separation of 0.60 eV between the highest occupied band at Γ point and

that at K point immediately suggests that strain cannot be used as a parameter to tune the

band gap so effectively here.

Examining the character of the highest occupied band at Γ point and that at K point we find

that the band at Γ point is contributed by Zn d - O p interactions involving the in-plane Zn

d orbitals and px�py orbitals on oxygen. The K point on the other hand is contributed by

Zn d3z2−r2 orbitals interacting with pz orbitals on oxygen as is evident from the charge density

plotted in Fig. 5.10. Both symmetry points are contributed by interactions between the Zn
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Figure 5.9: Ab-initio band dispersions for monolayer ZnO within LDA+U , U=8 eV at its

experimental lattice constant. The zero of energy is the valence band maximum.

d and O p orbitals. So as there are similar shifts expected with biaxial tensile strain at both

symmetry points, one finds that the strain tunability is small.
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Figure 5.10: The charge density plot for monolayer ZnO for the highest occupied band at (a)Γ

and (b) at K high symmetry points. obtained from ab-initio calculations using LDA+U, U=8

eV potentials at 0% strain.
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Figure 5.11: The variation of the direct and the indirect band gap for monolayer ZnO at various

biaxial tensile strain obtained within ab-initio calculations using LDA+U, U=8 eV potentials.

In Fig. 5.11 we have plotted the energy gap as a function of biaxial tensile strain for the case

where the highest occupied band at K point is considered in addition to the conduction band

bottom is at Γ point. This is denoted as the energy gap KΓ. We have also plotted the direct

band gap at ΓΓ between the highest occupied band at Γ and the lowest unoccupied band also

at Γ point. Upto a biaxial tensile strain of 8% one finds that the direct band gap is smaller

than the indirect one. The KΓ energy gap becomes the smaller band gap for values of biaxial

tensile strain greater than 8%. We have calculated the phonon spectrum at a strain percentage

of 10% which is shown in Fig. 5.12 and we find the phonon modes to be positive. This indicates

that the structure is stable even when subjected to such a large strain.

The study for MoS2 and ZnO have provided a simple route to systems in which band gap

engineering from a direct to an indirect band gap semiconductor is possible. We consider two

other systems MoSe2 and WSe2 which have a structure similar to MoS2 and find that at the

experimental lattice parameters, the highest occupied band (VBM) at Γ and K point differ by

0.365 and 0.42 eV (Table 5.3). Hence a modest strain of ∼ 3% (Table 5.3) is able to bring about
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Figure 5.12: The calculated phonon dispersion for ZnO at 10% biaxial tensile strain along

various symmetry directions.

Table 5.3: Strain percentage at which the band gap crossover takes place and the energy

difference of the VBM/CBM at Γ (E(Γ))and K (E(K)) at 0% strain of MoSe2, WSe2 and BN

monolayer. The energies are in eV.

System Strain Percentage E(Γ)- E(K)

MoSe2 monolayer ∼ 3% 0.365 (VBM)

WSe2 monolayer ∼ 3% 0.420 (VBM)

BN monolayer ∼ 2% -0.094 (CBM)
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the transition from a direct band gap semiconductor to an indirect band gap one. While at

first sight, the differences in the two systems studied could be directly linked to the structure

involved, we consider the third case to be BN which has a structure similar to ZnO which

we have studied earlier. In contrast to ZnO, here we find that the lowest unoccupied band

(CBM) at Γ point is 0.094 eV lower than the CBM at K point using the experimental lattice

parameters. However from an analysis of the character of these points we find that the Γ point

is contributed by interactions between N-s states, while one finds that the K point emerges

from B- p interactions. Hence as the hopping interaction strengths scale as 1/rl+l
′
+1, the CBM

at Γ and K move at different rates under strain. Hence a transition is found at a modest value

of strain of 2%.

5.4 Conclusion

We have considered one monolayer of two semiconductors MoS2 and ZnO both of which exhibit

a direct to indirect band gap transition under biaxial tensile strain. While a small biaxial

tensile strain of 0.83% drives the transition in MoS2, a much larger biaxial tensile strain of

8% is required in the case of ZnO. This is traced to the nature of interactions determining

the highest occupied band at Γ and K points. While Mo d - S p interactions contribute to

the valence band maximum at Γ point, Mo d - Mo d interactions contribute to the VBM at

K point. Strain modifies the hopping interaction strengths and therefore brings about the

transformation from a direct band gap material to an indirect band gap one. A scaling of

the hopping interaction strengths according to Harrison’s scaling law within a tight binding

model for MoS2 is able to capture the effect. In ZnO as the VBM at both symmetry points are

determined by Zn d - O p interactions, the scaling is not as effective and requires a much larger

strain to bring about the transition. Hence a simple design principle emerges in the choice of

systems for band gap engineering by strain.
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Chapter 6

A Model for the Direct to Indirect

Band gap Transition in Monolayer

MoSe2 as a Function of Strain

6.1 Introduction

Layered transition metal sulphides and selenides have been widely studied since the 1960s

for wide ranging applications which include their use as a dry lubricant [1], in catalysis [2],

photovoltaics [3] as well as batteries [4]. The recent interest in graphene [5] [6] [7] has brought

the focus onto these materials which have the advantage of being semiconducting in addition to

being layered. Interestingly, in each of these materials while the single layer is a direct band gap

material [8] [9], the bilayer and beyond become indirect band gap materials [10] [9]. Indirect

band gap materials are suitable for various applications such as photovoltaics [3] where one

would like to bring about the spatial separation of the generated electron-hole pair. Considering

a monolayer of MoS2 we have shown that a modest strain of 2% [11], is sufficient to bring about

the transition from a direct band gap semiconductor to an indirect band gap one. Analyzing

the charge density in the unstrained case it is found that the valence band maximum (VBM)
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which is at K point is contributed by Mo d-Mo d interactions while the highest occupied band

at Γ point is contributed by Mo d-S p interactions. Under strain one can change the Mo-Mo

distances while keeping the Mo-S separation almost unchanged. As the hopping interaction

strengths for electrons on orbitals with angular momenta l and l′ respectively vary as 1/rl+l′+1

according an empirical law referred to as to Harrison’s scaling law [12], it is shown that a scaling

of the hopping interaction strengths with distance could explain the direct to indirect band gap

transition. There are several other reports which demonstrate the band gap transformation from

direct to indirect in mnolayer transition metal sulphides and selenides as function of strain. For

instance, P. Johari et al. [13] have shown for MoS2, MoSe2, WS2 and other transition metal

disulphides and selenides that by applying a modest value of biaxial strain can reduce the

band gaps causing an direct(KK) to indirect (ΓK) band gap and a semiconductor-to-metal

transition.

This model was first applied to MoS2 [11] and is extended to MoSe2 in the present present

chapter. The unstrained band structure for this system calculated within ab-initio electronic

structure calculations is found to reproduce the experimental observation [14] that this system

is a direct band gap semiconductor. The VBM is at K point and the conduction band bottom

(CBM) is also at K point. A biaxial strain of 3 % in the case of MoSe2 is able to bring about

a change-over with the band at Γ point becoming the VBM. We then have a transition from

a direct band gap material to an indirect band gap one. In order to model this transition,

a tight binding model has been set up for the system. The onsite energies as well as the

hopping interaction strengths have been estimated by fitting the ab-initio band structure for

the unstrained case. The transition metal d-transition metal d interaction strengths are allowed

to vary with distance according to Harrison’s scaling law [12]. This model is able to capture

the strain induced direct to indirect band gap transition.
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Figure 6.1: The atom and angular momentum projected partial density of states for Mo and

Se atoms from ab-initio calculations using GGA potentials at 0% strain. The zero of energy

corresponds to the valence band maximum.

6.2 Methodology

The electronic structure of monolayer MoSe2 has been calculated within a plane wave im-

plementation of density functional theory using VASP [15] code. The experimental crystal

structure [14] has been taken in the case of MoSe2. A vacuum of 20 Å is used between suc-

cessive monolayers to minimize interactions between images in the periodic supercell method

that we use for this structure. While the lattice parameters are kept fixed at the experimen-

tal values [16], the internal positions are optimized in each case. Projected augmented wave

potentials [17] are used to solve the electronic structure self-consistently using a k-points mesh

of 12×12×1 with a cutoff energy for the plane wave basis states equal to 280 eV. PBE [18]

potentials are used for the exchange-correlation functionals and the calculations are performed

as a function of biaxial tensile strain.
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For the microscopin analysis of the band gap transformation, in this chapter, we have developed

a tight binding model for the monolayer MoSe2 to map the ab-initio results onto this. In order

to determine the appropriate basis for the tight binding model, the Mo and Se partial density

of states are shown in Fig. 6.1. The zero of energy is the Fermi energy. One finds that the

Mo d states contribute in the energy window 5 eV below the Fermi energy and upto 5 eV

above the Fermi energy. The Mo s and Mo p states are more extended and so their weight

in any given energy window is low. However our earlier work [11] has shown that to get a

good description of the ab-initio band structure in a wide energy window from 10 eV below

the Fermi level to around 5 eV above, one needs to include the the Mo s, p, d states in the

basis. The Se s states are around 12 eV below the Fermi level, with Se p states contributing

dominantly in the region of interest. Se d states are found to contribute in the energy window

beyond 5 eV above the Fermi level. We therefore include Se s,p,d states in the basis for the

tight binding model considered. The tight-binding parameters are determined by a least-square

error minimization [19]. Similar to monolayer MoS2, for the strained case, a Harrison’s type

scaling [12] of the hopping integrals of the form 1/rl+l′+1 has been assumed for the Mo d-Mo

d interaction for deviations upto 0.1 Å about the distance at which the hopping interaction

strength is defined, while the onsite energies are allowed to vary.

6.3 Results and Discussion

Figure 6.2: Crystal structure of a monolayer of MoSe2.
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The structure of monolayer MoSe2 is shown in Fig. 6.2. The Mo-Se and Mo-Mo(S-Se) bond-

lengths at the experimental lattice constants [16] are found to be 2.48 Å and 3.25 Å. Under 3 %

biaxial tensile strain, the Mo-Se and Mo-Mo (Se-Se) bond-lengths are found to be become 2.52

Å and 3.35 Å. So, the Mo-Se bond-lengths are hardly changing. The ab-initio band dispersions

for MoSe2 plotted along various symmetry directions are shown in Fig. 6.3. The calculations

capture the semiconducting nature of the compound and find a band gap of 1.59 eV at 0 %

strain. This is in reasonable agreement with the experimental value of 1.55 eV [14]. While

LDA/GGA calculations are usually found to underestimate the band gap, the agreement is

fortuitous.

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

E
ne

rg
y 

(e
V

)

Γ K M Γ

Figure 6.3: Comparison of ab-initio band dispersions (solid line) for monolayer MoSe2 at its

experimental lattice constant(0 % biaxial tensile strain), using GGA potentials and the fitted

tight binding bands (dashed line), using a basis consisting of Mo s,p,d and Se s,p,d states. The

zero of energy corresponds to the valence band maximum.

The ab-initio band structure is fit to a tight binding model discussed earlier in the Methodology

section. The parameters entering the tight binding Hamiltonian are determined by a least

square error minimization process. Not all bands are considered in this fitting but just all the

bands comprising the valence band in the energy window -7 eV to the Fermi energy as well as

two bands comprising the conduction band. The ab-initio band structure has been shown in
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black solid line while the tight binding band structure has been shown in red dashed line in the

same figure. The description in this minimal tight binding model is reasonable. The parameters

entering the tight binding Hamiltonian are given in Table 6.1. The onsite energies are denoted

by Es where the subscript corresponds to the orbital involved. For the Mo d orbitals we found

the need to allow for the degeneracy lifting of the d orbitals. The inter-site hopping interactions

have been parametrized in terms of the Slater-Koster parameters and are tabulated for first

neighbour Mo-Se sites as well as second neighbour Mo-Mo and Se-Se sites.

Figure 6.4: The charge density plot for monolayer MoSe2 for the highest occupied band atK

point obtained from ab-initio calculations using GGA potentials at 0 % strain.

Figure 6.5: The charge density plot for monolayer MoSe2 for the highest occupied band at Γ

point obtained from ab-initio calculations using GGA potentials at 0 % strain.
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Table 6.1: Parameters obtained from least-squared-error fitting of the ab-initio band structure

onto a tight binding model using s, p, d orbitals of Mo and Se for monolayer MoSe2 at 0 %

biaxial tensile strain. The energies are in eV.

Es Ep Edxy Edyz Edzx Edx2−y2
Edz2

Mo 4.88 8.38 3.76 1.80 1.80 3.76 1.08

Se -14.55 -4.12 8.45 8.45 8.45 8.45 8.45

E(Mo,Mo) E(Mo,S) E(S,S)

ssσ -0.82 -1.03 -0.20

spσ 0.69 1.84 0.05

sdσ -0.01 -0.72 -0.15

ppσ 1.34 1.43 0.97

ppπ -0.55 -0.19 -0.13

pdσ -1.29 -1.49 0.00

pdπ 0.29 3.01 0.49

ddσ -0.54 -3.86 -0.01

ddπ 0.04 2.31 0.14

ddδ -0.01 -0.39 -0.01

psσ -0.69 -1.20 -0.05

dsσ -0.01 -1.66 -0.15

dpσ 0.29 2.56 0.00

dpπ -0.29 -0.38 -0.49
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In order to understand the nature of interactions contributing to the VBM at 0 % strain, we

have plotted the charge density in Fig. 6.4 corresponding to the eigen value at K point. One

finds substantial interaction between the in-plane d orbitals- dxy and dx2−y2 contributing to the

eigen value corresponding to the VBM arising from the extended nature of the 4d transition

metal atom wave function, so even if separations are as large as 3.25 Å, there is significant

interaction. The highest occupied band at Γ point is on the other hand contributed by Mo

d-Se p interactions involving dz2 orbitals on Mo and pz orbitals on Se which is shown in Fig.

6.5. When we apply biaxial strain, one finds that the Mo- Se bond-length does not try to

change, while the Mo- Mo bond is elongated. This immediately suggests a route to modifying

the character of the VBM via strain. The Mo d-Mo d interactions can be modified when the

Mo-Mo separation is increased. The hopping interactions between two orbitals scale inversely

with distance according to a power law. Increasing the separation decreases the interaction

strength. As the VBM is contributed by antibonding states arising from Mo-Mo interactions,

one finds that these states move deeper into the valence band.
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Figure 6.6: Comparison of ab-initio band dispersions for monolayer MoSe2 at its experimental

lattice constant at 0 % biaxial tensile strain (solid line) and 3 % biaxial tensile strain (dashed

line) using GGA potentials. The zero of energy corresponds to the valence band maximum.
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Indeed when we plot the band structure under 3 % strain, we find a crossover of the VBM from

K to Γ in Fig. 6.6. In the figure, we superpose the ab-initio band dispersions calculated at 0

% strain as well as 3 % strain. As under strain only the second neighbor interaction strengths

are affected, one doesn’t expect too much change in the band structure with strain. While at

first sight, there seem to large differences, shifting the dominantly Se p states in the 3 % strain

calculation are found to match up with the bands at 0 % strain calculation. Similarly we can

shift the bands contributed dominantly by Mo d states in the 3 % calculation to those in the

unstrained case. This indicates that the large differences emerge from charge transfer between

the Mo and Se sites.
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Figure 6.7: Comparison of ab-initio band dispersions (solid line) for monolayer MoSe2 at its

experimental lattice constant(3 % biaxial tensile strain), using GGA potentials and the fitted

tight binding bands (dashed line), using a basis consisting of Mo s,p,d and Se s,p,d states. The

zero of energy corresponds to the valence band maximum.

In order to determine the parameters entering the tight binding Hamiltonian at the 3 % strain,

we used the extracted parameters at 0 % strain. The onsite energies are allowed to vary, while

the hopping interaction strengths are kept fixed at the values of Table 6.1 and are allowed to

scale according to Harrison’s scaling law [12] discussed earlier. The values of onsite energies
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Table 6.2: The onsite energies obtained from least-squared-error fitting of the ab-initio band

structure onto a tight binding model using s,p,d orbitals of Mo and Se for monolayer MoSe2 at

3 % biaxial tensile strain. The energies are in eV.

Es Ep Edxy Edyz Edzx Edx2−y2
Edz2

Mo 5.23 8.78 4.26 1.99 1.99 4.26 1.54

Se -14.78 -4.36 6.37 6.37 6.37 6.37 6.37

extracted from the fitting are listed in Table 6.2. The scaling affected the Se-Se as well as Mo-

Mo interaction strengths. A comparison of the ab-initio band structure and the best fit tight

binding band structure are shown in Fig. 6.7. The tight binding model is able to capture the

transition from direct into an indirect band gap semiconductor and the valence band maximum

is shifted to Γ point.

6.4 Conclusion

A monolayer of MoSe2 is found to be a direct band gap semiconductor. We show, within

ab-initio electronic structure calculations, that a modest biaxial tensile strain of 3 % is able

to drive it into an indirect band gap semiconductor with the valence band maximum (VBM)

shifting from K point to Γ point. we have set up a realistic tight binding model to discuss the

electronic structure of MoSe2 under strain. The model is able capture the direct to indirect

band gap transition with strain.
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Chapter 7

Understanding of the Changeover from

Direct to Indirect Band Gap in MoSe2

and MoS2 as a Function of Thickness

7.1 Introduction

The layered transition-metal dichalcogenides (TMDs) have been investigated for over fifty years

now. However, recent interest in this class of materials has been spurred by possible applications

in nanoelectronics, photovoltaics, catalysis to name a few [1] [2] [4] [3]. Further advances in the

isolation of one or more layers by a process of exfoliation [5] has led to the exploration of the

properties of these materials as a function of thickness. Analogous to the nanomaterials where

one finds a size dependence of the band gap [6] [7] [8], we find thickness dependent changes in

the electronic structure of the layered transition metal dichalcogenides. Additionally one finds

a thickness dependent band gap which changes character. The bulk band gap of MoS2 is found

to be an indirect one of 1.3 eV [9] which increases to 1.6 eV in the bilayer limit [10]. The nature

of the band gap changes and becomes a direct one of 1.9 eV at the monolayer limit [11]. The

fact that the monolayers of transition metal dichalcogenides have a direct band gap is evident
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from the sharp peak that one finds in the photoluminescence spectra [12]. MoSe2 is also has

an indirect band gap of 1.1 eV [13] in the bulk limit whereas in the monolayer limit it has

direct band gap of about 1.66 eV [14]. There are two types of MX2 (M = Mo, W, Ti etc., X

= S, Se, etc.) sandwiches depending on the coordination of the transition metal atom with

the chalcogens. One is 1T-MX2 where the coordination is octahedral and the other is 2H-MX2

which is trigonal prismatic. The 1T structure is not as stable as the 2H configuration for the

group-VIB TMDs [15]. Additionally there can be several ways in which the monolayers can be

stacked. However the coupling between the layers is believed to be arising from van der Waals

(vdW) interaction and is consequently weak.

The band gap dependence as a function of thickness is believed to arise from quantum con-

finement effect with a weak component if any coming from inter-layer interactions. Kuc and

coworkers [16] considered MoS2 and WSe2 and calculated the electronic structure as a function

of thickness. They found that for both materials the fundamental band gap originates from the

transition from the top of the valence band at Γ to the bottom of the conduction band halfway

between Γ and K (referred to as T point). This is the case as the thickness is varied from two

monolayers to the bulk limit. The optical band gap which is at K point on the other hand

remains unchanged with a variation in the number of layers. An analysis of the charge density

at the valence band maximum (VBM) at Γ as well as the conduction band minimum (CBM) at

T point reveals that this is contributed by orbitals pointing to the other layer, suggestive of a

dominant contribution from inter-layer interactions at these k-points. They however conclude

that quantum confinement effects drive the band gap transition from indirect to direct as the

number of monolayers is decreased. Padilha and co-workers [17] considered an internal refer-

ence for the band gap calculations for MoS2 performed as a function of thickness. Aligning the

energy eigen values with respect to this internal reference, they found that the position of the

VBM at Γ increases with respect to vacuum. The CBM at K point however remained constant.

This clearly shows the effect of quantum confinement on the electronic structure. Zhang and

Zunger [18] have examined the evolution of the electronic structure as a function of thickness.

They conclude that the indirect to direct band gap transition with thickness has contributions
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from both quantum confinement as well as inter-layer interactions and neither alone can be

separated out as a cause.

In this chapter, we have studied the variation of the band gap in MoSe2, in the bilayer and

monolayer limit. The band structures obtained from ab-initio electronic structure calculations

are found to reproduce the experimental observation [10] that this system is a direct band gap

semiconductor in the monolayer limit. But, as we move on to the bilayer limit, the system

becomes an indirect band gap material. In our calculations, we find that the CBM shifts from

K to T point as we move on from the monolayer to the bilayer. The VBM on the other hand

shifts from K to Γ point. As discussed earlier, there are two competing effects which bring

about the crossover from a direct to an indirect band gap as a function of thickness. The first

one is the inter-layer interaction and the other one is the quantum confinement. In order to

understand which is the dominant effect in bringing about the band gap crossover, our approach

has been to examine the evolution of the electronic structure of MoSe2 within a tight binding

model. We mapped the ab-initio band structure onto a tight binding model using Mo d and

Se p as the basis states. Maximally localized Wannier functions are used for the radial parts of

these basis functions. The bilayer band structure we find, can be represented by considering the

monolayer tight binding Hamiltonian and additionally introducing interactions between the two

layers. This model also captures the direct to indirect band gap transition that one finds as a

function of thickness in both the materials. Hence a dominant role in bringing about the direct

to indirect band gap transition with thickness is played by the inter-layer interactions. Hence

our analysis suggests a negligible role played by quantum confinement effects in the electronic

structure changes as a function of thickness. The ideas arrived at for MoSe2 are then tested for

another system of MoS2, with success in this case also.

7.2 Methodology

The electronic structure calculations of bilayer MoSe2 is carried out within a plane wave imple-

mentation of density functional theory (DFT) using the VASP [19] code. We have taken the 2H

109



Figure 7.1: Crystal structure of a 2H bilayer of MoSe2 where magenta and green atoms are

Mo and Se atoms respectively. In this figure (a) and (b) show the top and side view of this

structure and (c) shows the unit cell.

stacking of MoSe2 shown in Fig. 7.1 as it is found to be the most stable structure [20]. While,

the lattice constants are kept at the experimental values of a=3.299 Å and c=12.939 Å [21],

all the atoms are allowed to relax through a total energy minimization that is guided by the

calculated atomic forces. A vacuum of 20 Å is used along z direction to minimize the interaction

among the periodic images. Projected augmented wave [22] [23] potentials are used to solve the

electronic structure self-consistently using a k-points mesh of 12×12 ×1 with a cutoff energy

for the plane wave basis states equal to 280 eV. Perdew-Burke-Ernzerhof (PBE) [24] potentials

are used for the exchange-correlation functionals. The bilayer band structures have also been

examined by using local density approximation (LDA). There is a weak van der Waals inter-

action between the layers which has an effect in the determination of the inter-layer distances.

A dispersion correction based on Grimmes DFT-D2 method [25] is used on top of the PBE

potentials. All results in this chapter use dispersion corrected LDA/PBE potentials.
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Figure 7.2: The atom and angular momentum projected partial density of states for Mo and

Se atoms from ab-initio calculations using GGA potentials. Zero of energy corresponds to the

Fermi energy.

In this chapter, we have developed a tight binding model for the bilayer MoSe2 so that the DFT

results can be mapped onto this for further analysis. In order to determine the appropriate

basis functions for the tight binding model of bilayer MoSe2, the projected density of states

(PDOS) is calculated which is shown in Fig. 7.2. The zero of the energy in Fig. 7.2 corresponds

to the VBM. The PDOS shows that the dominant contribution is coming from Mo d and Se p

states while non-zero contribution is coming from other states. So, we setup the tight binding

model with Mo d and Se p states in the basis. In this model, the maximally localized Wannier

functions [26] represent the most natural choice for the radial parts of the basis functions.

Technically, the degree of localisation and the symmetry of these Wannier functions can be

controlled in the projection procedure. All on-site energies and hopping interaction strengths

in this case are determined from the interface of VASP to Wannier90 [27]. Even if we get an

excellent mapping of the ab-initio band structure within the tight binding model Hamiltonian,
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the extracted values of the hopping interaction strengths are dependent on the pair of orbitals

considered which make a mapping onto a consistent set of Slater-Koster parameters difficult.

To get a good description within a Slater-Koster type parametrization scheme, we have devel-

oped another tight binding model with Mo s, p, d as well as Se s, p, d states as basis functions

suggested by our earlier work of monolayer MoSe2 [28]. The onsite energies considered in this

model are those which we extracted from the tight binding fitting of bilayer MoSe2 using Wan-

nier functions as basis functions. The hopping interaction strengths however, are obtained

from the tight binding fitting of the ab-initio band structure of monolayer MoSe2 [28] by a

least-square-error minimization procedure [29] and are used as the in-plane hopping interaction

strengths for the case of the bilayer MoSe2. The in-plane hopping interaction strengths are set

as fixed parameters while the inter-layer hopping parameters are determined by a least-square-

error minimization procedure in fitting the ab-initio bilayer band structure. A Harrison’s type

scaling law [30] of the hopping integrals of the form 1/rl+l′+1 has been assumed for deviations

upto 0.2 Å about the distance at which the hopping interaction strength is defined. The ideas

built from our analysis for MoSe2 is used to examine the crossover of band gap as a function

of thickness of MoS2. The lattice constants used for MoS2 are a=3.16 Å and c=12.296 Å [31].

7.3 Results and Discussion

In the 2H structure of bilayer MoSe2 shown in Fig. 7.1, each molecular sheet (monolayer) can

be viewed as three layer stacking of Mo and Se atoms where Mo atoms are sandwiched between

layers of Se atoms. The Se atoms generate a trigonal prismatic crystal field. The stacking has

the Mo atom in one layer above that in the layer beneath (as shown in panel (c)) However

the Mo-Se motif is rotated by 180◦ in the layer above with respect to the layer beneath. The

monolayers in the unit cell interact with each other through van der Waals forces which is

much weaker than the in-plane covalent bonds. The inter-layer separation obtained from the

optimization with vdW interaction is 3.21 Å. In the optimized structure, the shortest in-plane
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Mo-Se and Mo-Mo (Se-Se) distances are 2.53 Å and 3.26 Å respectively whereas the shortest

inter-layer Mo-Se and Se-Se distances are found to be 4.87 Å and 3.72 Å respectively.
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Figure 7.3: The ab-initio band dispersion for monolayer MoSe2 at it’s experimental lattice

constant using GGA potentials. The arrow indicates that band gap is direct. The zero of

energy is the valence band maximum.

The ab-initio band dispersions of monolayer MoSe2 with GGA is plotted along various symmetry

directions in Fig. 7.3. From the figure it can be clearly seen that in monolayer MoSe2, both

VBM and CBM are at K point which make it a direct band gap semiconductor with a band

gap of 1.59 eV [28]. The experimental band gap is found to be 1.66 eV [14]. The agreement

between experiment and theory is fortuitous. The k-point association of the VBM and CBM

are consistent with earlier reports in the literature [32].

Now, in Fig. 7.4 the ab-initio band dispersion of bilayer MoSe2 with GGA is plotted. The figure

shows that the VBM in the bilayer is shifted from K to Γ point and the CBM on the other

hand is shifted from K to T point which leads to an indirect band gap of 1.25 eV. This band

gap is underestimated compared to the experimental band gap of 1.55 eV [10]. Theoretical

studies of the bilayer transition metal dichalcogenides (MoSe2, MoS2) suggest that the k-point

association of the VBM and CBM depend on whether dispersion-corrected potentials are used
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Figure 7.4: The ab-initio band dispersion for bilayer MoSe2 at it’s experimental lattice constant

using GGA potentials. The arrow indicates that band gap is indirect. The zero of energy is

the valence band maximum.
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Figure 7.5: The ab-initio band dispersion for bilayer MoSe2 at it’s experimental lattice constant

using LDA potentials. The arrow indicates that band gap is indirect. The zero of energy is the

valence band maximum.
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or not. For instance, L. Debbichi et al. [32] have shown that bilayers of MoS2 and MoTe2

have an indirect band gap with the VBM located at Γ and the CBM at T using GGA for

the exchange-correlation functionals and Tkatchenko-Scheffler (DFT-TS) for incorporating the

vdW interaction. The same trend of VBM and CBM is observed in free-standing bilayer MoSe2

by A. J. Bradley [33] using the ab-initio GW method including the effect of vdW which agrees

well with their experimental results. On the other hand, S. W. Han et al. [34] have shown that

VBM and CBM of MoS2 shift from K to Γ and T point as one goes from monolayer to the bulk

performing in full-potential linearized augmented plane wave (FLAPW) method using GGA.

According to them, for bilayer, the CBM at T is slightly higher than at K. So, the k-points

making up the VBM and CBM of bilayer MoSe2, observed in our calculation agrees well with the

literature. We have also plotted the band structure of bilayer MoSe2 using LDA in Fig. 7.5 to

show that the band structure remain qualitatively unchanged even if the exchange-correlation

functional differs.
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Figure 7.6: Comparison of ab-initio band dispersions for monolayer MoSe2 (black solid line)

and bilayer MoSe2 (red dashed line) at it’s experimental lattice constant using GGA potentials.

The zero of energy is the valence band maximum.

The comparison of ab-initio band dispersions of monolayer and bilayer MoSe2 is plotted along

various symmetry directions in Fig. 7.6. These two band structures are similar in every
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direction except at the position of the VBM and CBM. Looking at the figures it is clear that

the difference of lowest unoccupied bands at K and the T point is found to be -0.031 eV and

0.234 eV for monolayer and bilayer MoSe2 respectively. It is known that bilayer MoSe2 differs

from monolayer only in one respect which is the presence of inter-layer interactions between

the layers. So, the small difference between the above two band structures implies that this

inter-layer interactions are very weak.

Figure 7.7: The charge density plot for bilayer MoSe2 for the highest occupied band at (a) Γ

and and for the lowest unoccupied band at (b) K and (c) T symmetry points obtained from

ab-initio calculations using GGA potentials.

Now, to understand the nature of interactions of the VBM for bilayer MoSe2, we have plotted

the charge density at Γ in Fig. 7.7(a). This shows that the VBM is contributed by Mo dz2 and

Se pz orbitals in each monolayer are pointing to each other. On the other hand, to examine

the character of the lowest unoccupied at K and that band at T, we have plotted the charge

densities in Figs. 7.7(b) and 7.7(c) respectively. From the plots, one finds that the lowest
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unoccupied band at T emerges mainly from the interactions between Mo dz2 orbitals while at

K point, it is derived mainly from the interactions of Mo dxy, dx2−y2 and Se px, py orbitals.

So, from the charge density analysis, it can be inferred that the inter-layer interactions play

a major role in bringing about the direct to indirect band gap crossover from monolayer to

bilayer MoSe2.

In order to understand the role of various microscopic interactions in bringing about the direct

to indirect band gap crossover in MoSe2 as a function of thickness, we have carried out a tight

binding calculation with Mo d and Se p states as basis functions to map the ab-initio band

structure of both monolayer and bilayer structures using VASP to Wannier90 interface. The

fitted tight binding bands are superposed on the ab-initio bands in Figs. 7.8 and 7.9 along

various symmetry directions for monolayer [28] and bilayer MoSe2 respectively. In both the

cases, it is clearly seen that we have an excellent mapping of the ab-initio band structures

onto the tight binding model which suggests a good description of the ab-initio band structure

within a tight binding model. The onsite energies extracted from these fittings are listed in

Table 7.1 for monolayer and bilayer MoSe2. The energies of all the orbitals in table 7.1 are

given with respect to the Se px orbital in each case of monolayer and bilayer as this orbital is in

plane and is least affected by the quantum confinement effects. From these energies, one finds

that all Mo d and Se p states of bilayer move higher than the respective states in monolayer

except the Se pz orbital. It can be observed that the Se pz state of bilayer MoSe2 is pushed to

deeper energies due to the charge transfer between the layers. However, these changes are very

small. This result implies that there is a negligible effect of quantum confinement effect in the

band gap crossover from direct to indirect.

So far, we have observed that the inter-layer interaction and the charge transfer between the

layers are the two effects which brings about the transformation from direct to indirect band gap

semiconductor in MoSe2 as a function of thickness. Now, we need to understand which is the

dominant effect of the above mentioned effects for bringing about the band gap transformation

in MoSe2 as a function of thickness. To get a quantitative idea of the effect of inter-layer

interaction, we have switched off all the inter-layer interactions in the real space Hamiltonian

of bilayer MoSe2 obtained from VASP to Wannier90 interface. Surprisingly, we find that, after
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Figure 7.8: Comparison of ab-initio band dispersions (black solid lines) for monolayer MoSe2

at it’s experimental lattice constant, using GGA potentials and the fitted tight binding bands

(line with red circle), using a basis consisting of Mo d and Se p states. Here the radial part

of the tight binding basis functions correspond to maximally localized Wannier functions. The

zero of energy is the valence band maximum.
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Figure 7.9: Comparison of ab-initio band dispersions (black solid line) for bilayer MoSe2 at it’s

experimental lattice constant, using GGA potentials and the fitted tight binding bands (line

with red circle), using a basis consisting of Mo d and Se p states. Here the radial part of the

tight binding basis functions correspond to maximally localized Wannier functions. The zero

of energy is the valence band maximum.
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Table 7.1: Onsite energies obtained from tight binding fitting of the ab-initio band structure

a basis consisting of Mo d and Se p for monolayer and bilayer MoSe2. The respective Se px is

taken as reference for this energies and these in eV.

Orbitals Monolayer MoSe2 Bilayer MoSe2

Se-Epx 0.00 +0.01

Se-Epy 0.00 0.0

Se-Epz -0.33 -0.38

Mo-Edxy +1.46 +1.51

Mo-Edyz +2.28 +2.31

Mo-Edzx +2.28 +2.31

Mo-Edx2−y2
+1.46 +1.52

Mo-Edz2
+1.20 +1.27

switching off the inter-layer interaction, the band structure of the bilayer almost exactly matches

with the band structure of monolayer MoSe2 shown in Fig. 7.10. The lowest unoccupied band

at the T point is raised by 0.25 eV and as a consequence of this, the energy difference of

lowest unoccupied band at K and the T point is found to be -0.016 eV shown in Fig. 7.10

was 0.234 eV including the inter-layer interaction of bilayer MoSe2. which is very close to the

above mentioned energy difference in the case of monolayer MoSe2 (-0.031 eV). For further

analysis, all the onsite energies in the real space Hamiltonian of bilayer MoSe2 are replaced by

the respective onsite energies of monolayer MoSe2 and this brings about further movement of

lowest unoccupied band at T point in the the upward direction by 0.019 eV. Hence, the above

mentioned energy difference becomes -0.033 eV which is almost exactly equal to that energy

difference in monolayer MoSe2. These analysis of bilayer MoSe2 confirm that the crossover from

direct to indirect band gap in MoSe2 as a function of thickness is dominantly driven by the

effect of the inter-layer interaction (∼ 92%) with a very small (∼ 8%) effect of charge transfer.
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Figure 7.10: Comparison of ab-initio band dispersion of monolayer MoSe2 (black solid line) at

it’s experimental lattice constant, using GGA potentials and band structure of bilayer MoSe2

(red line) when the inter-layer hopping interactions are switched off. The zero of energy is the

valence band maximum.

Closer analysis reveals that the extracted hopping interaction strengths from these tight binding

fitting of monolayer and bilayer MoSe2 have a complicated distance dependence which do not

allow a mapping onto a set of Slater-Koster parameters. To determine the appropriate inter-

layer hopping interaction strengths of bilayer MoSe2, we consider a tight binding model with

Mo s, p, d and Se s, p, d states in the basis. The onsite energies of bilayer MoSe2 listed in Table

7.1, are considered in this model and are kept as fixed parameters. The hopping interaction

strengths determined from the tight binding fitting of monolayer MoSe2 [28] are used as the in-

plane hopping parameters for this model and are also kept fixed as the in-plane environment is

same for monolayer and bilayer. Now, the inter-layer hopping interaction strengths for Mo-Mo,

Mo-Se and Se-Se are determined by a least-square-error minimization process. A comparison of

the band structure from the tight binding fitting calculation with the band structure from ab-

initio are shown in Figs. 7.11 and 7.12 for both monolayer [28] and bilayer MoSe2 respectively.

From the Figs. 7.11 and 7.12, this can be seen that the description of the minimal tight binding

model is reasonable. The inter-layer hopping interaction strengths from this model are listed
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Figure 7.11: Comparison of ab-initio band dispersions (black solid line) for monolayer MoSe2

at it’s experimental lattice constant using GGA potentials and the fitted tight binding bands

(red dashed line), using a basis consisting of Mo s,p,d and Se s,p,d states. The zero of energy

is the valence band maximum.
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Figure 7.12: Comparison of ab-initio band dispersions (black solid line) for bilayer MoSe2 at

it’s experimental lattice constant using GGA potentials and the fitted tight binding bands (red

dashed line), using a basis consisting of Mo s,p,d and Se s,p,d states. The zero of energy is the

valence band maximum.
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Table 7.2: Parameters obtained from least-square-error fitting of the ab-initio band structure

onto a tight binding model using s, p, d orbitals of Mo and Se for bilayer MoSe2. The radial

part of the tight binding basis functions correspond to maximally localized Wannier functions.

The distances between the neighbors are given in brackets in unit of Å. The energies (E) are

in eV.

E(Mo,Se)(5.88) E(Se,Se)(3.72) E(Se,Se)(4.97) E(Se,Se)(5.93)

ppσ 0.00 0.45 0.02 0.01

ppπ 0.00 -0.04 -0.00 -0.01

pdσ -0.94 0.00 0.00 0.00

pdπ 0.10 0.00 0.00 0.00

dpσ 0.25 0.00 0.00 0.00

dpπ -0.01 0.00 0.00 0.00

in Table 7.2. So, this shows that direct to indirect band gap crossover in MoSe2 as a function

of thickness can be described in terms of scaling of the interaction according to Harrison’s law.

Similar analysis has been done for MoS2 which has the structure same as MoSe2. In the

optimized structure of bilayer, the shortest in-plane Mo-S and Mo-Mo (S-S) distances are 2.41

Å and 3.16 Å respectively. The inter-layer distance obtained from the optimization with vdW

interaction is 3.14 Å. The ab-initio band dispersions of monolayer and bilayer MoS2 with GGA

are plotted along various symmetry directions in Figs. 7.13 and 7.14.
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Figure 7.13: The ab-initio band dispersion for monolayer MoS2 at it’s experimental lattice

constant using GGA potentials. The arrow indicates that band gap is direct. The zero of

energy is the valence band maximum.

Similar to the case of monolayer MoSe2, Fig. 7.13 show that monolayer MoS2, is a direct band

gap semiconductor with both the VBM and CBM atK point using GGA as exchange-correction

functional. The obtained band gap from our calculation is 1.76 eV which is almost close to the

experimental band gap of 1.9 eV [11]. On the other hand, bilayer MoS2 has an indirect band

gap of 1.37 eV with the VBM and CBM at Γ and T points respectively shown in 7.14 using

GGA. The band structure of bilayer MoS2 with LDA shown in Fig. 7.15 is qualitatively same

as with GGA.

123



-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

E
ne

rg
y 

(e
V

)

Γ MK Γ

Figure 7.14: The ab-initio band dispersion for bilayer MoS2 at it’s experimental lattice constant

using GGA potentials. The arrow indicates that band gap is indirect. The zero of energy is

the valence band maximum.
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Figure 7.15: The ab-initio band dispersion for bilayer MoS2 at it’s experimental lattice constant

using LDA potentials. The arrow indicates that band gap is indirect. The zero of energy is the

valence band maximum.
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Figure 7.16: Comparison of ab-initio band dispersions for monolayer MoS2 (black solid line)

and bilayer MoS2 (red dashed line) at it’s experimental lattice constant using GGA potentials.

The zero of energy is the valence band maximum.

The comparison of ab-initio band dispersions of monolayer and bilayer MoS2 is plotted along

various symmetry directions in Fig. 7.16. Similar to MoSe2, these two band structures of MoS2

are matching with each other almost in every directions except at the positions of VBM and

CBM which implies that the inter-layer interactions are very weak. The Fig. 7.16 show that

the difference of lowest unoccupied bands at K and the T point is found to be -0.149 eV and

0.031 eV for monolayer and bilayer MoS2 respectively.
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Figure 7.17: Comparison of ab-initio band dispersions (black solid line) for monolayer MoS2

at it’s experimental lattice constant, using GGA potentials and the fitted tight binding bands

(line with red circle), using a basis consisting of Mo d and S p states. Here the radial part of

the tight binding basis functions correspond to maximally localized Wannier functions. The

zero of energy is the valence band maximum.
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Figure 7.18: Comparison of ab-initio band dispersions (black solid line) for bilayer MoS2 at it’s

experimental lattice constant, using GGA potentials and the fitted tight binding bands (line

with red circle), using a basis consisting of Mo d and S p states. Here the radial part of the

tight binding basis functions correspond to maximally localized Wannier functions. The zero

of energy is the valence band maximum.
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The ab-initio band structures fitted with tight binding model considering Mo d and S pWannier

functions as basis functions for monolayer [35] and bilayer MoS2 are plotted along various

symmetry directions in Figs. 7.17 and 7.18. Now, similar to MoSe2, to quantify the effect

of inter-layer interactions, those interactions are switched off in the real space Hamiltonian.

As expected, after switching off the inter-layer interactions, the band structure of the bilayer

almost exactly matches with the band structure of monolayer MoS2 shown in Fig. 7.19. This

results from a movement of the lowest unoccupied band in upward direction at the T point by
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Figure 7.19: Comparison of ab-initio band dispersion (red dashed line) for monolayer MoS2 at

it’s experimental lattice constant, using GGA potentials and the bilayer bands (magenta line)

when the inter-layer hopping interactions are switched off. The zero of energy is the valence

band maximum.

the amount of 0.168 eV of bilayer MoS2 shown in Fig. 7.19. The CBM is then shifted from

the point T to K. The above mentioned energy difference in bilayer MoS2 almost reaches the

value of -0.137 eV which is very close to the above mentioned energy difference in monolayer

MoS2 (-0.149 eV). So, these analysis confirms that inter-layer interaction alone is able to drive

the direct to indirect band gap transformation in MoS2 as a function of thickness whereas the

quantum confinement effect hardly plays any role.
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7.4 Conclusion

We have examined the electronic structure of a monolayer as well as a bilayer of MoSe2 and

MoS2. Considering a tight binding model we are able to reproduce the band structure calcu-

lated within ab-initio calculations. Using the extracted parameters, we are able to predict the

contribution from inter-layer interactions and charge transfer effects leading to the crossover

from direct to indirect band gap as a function of thickness.
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[13] T. Böker, R. Severin, A. Müller et al., Phys. Rev. B 64, 235305 (2001).

[14] J. S.Ross, S. Wu, H. Yu et al., Nat. Commun., 4, 1474 (2013).

[15] X. Qian, J. Liu, L. Fu and J. Li, arXiv:1406.2749 (2014).

129



[16] A. Kuc, N. Zibouche and T. Heine, Phys. Rev. B 83, 245213 (2011).

[17] J. E. Padilha, H. Peelaers, A. Janotti et al., Phys. Rev. B 90, 205420 (2014).

[18] L. Zhang and A. Zunger, Nano Lett. 15, 949 (2015).

[19] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

[20] Q. Liu, L. Li, Y. Li et al., J. Phys. Chem. C, 116, 21556 (2012).

[21] A. A. Al-Hilli and B. L. Evans, J. Cryst. Growth 15, 93 (1972).

[22] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
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